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Abstract

On learning the Gaussian mixture model, existing BYY learning algorithms are featured
by a gradient-based line search with an appropriate stepsize. Learning becomes either
unstable if the stepsize is too large or slow and gets stuck in a local optimal solution if
the stepsize is too small. An algorithm without a learning stepsize has been proposed
with expectation-maximization (EM) like two alternative steps. However, its learning
process may still be unstable. This paper tackles this problem of unreliability by a
modified algorithm called projection-embedded Bayesian Ying-Yang learning
algorithm (pBYY). Experiments have shown that pBYY outperforms learning algorithms
developed from not only minimummessage length with Jeffreys prior (MML-Jef) and
Variational Bayesian with Dirichlet-Normal-Wishart (VB-DNW) prior but also BYY with
these priors (BYY-Jef and BYY-DNW). pBYY obtains the superiority with an easy
implementation, while DNW prior-based learning algorithms suffer a complicated and
tedious computation load. The performance of pBYY has also been demonstrated on
the Berkeley Segmentation Dataset for the topic of unsupervised image segmentation.
The resulted performances of semantic image segmentation have shown that pBYY
outperforms not only MML-Jef, VB-DNW, BYY-Jef, and BYY-DNW but also three leading
image segmentation algorithms, namely gPb-owt-ucm, MN-Cut, and mean shift.

Keywords: Gaussian mixture model; Model selection; BYY harmony learning; Nearest
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Background
Introduction

Gaussian mixture model (GMM) has been widely used in different areas, e.g., cluster-
ing, image segmentation (Zhang et al. 2001), speaker identification (Reynolds 1995),
document classification (Nigam et al. 2000), market analysis (Chiu and Xu 2001), etc.
Learning a GMM consists of parameter learning for estimating all unknown param-
eters and model selection for determining the number of Gaussian components
k. Parameter learning is usually implemented under the maximum likelihood principle by
an expectation-maximization (EM) algorithm (Redner andWalker 1984). A conventional
model selection approach is featured by a two-stage implementation, which suffers from
a huge computation because it requires parameter learning for each candidate GMM.
Moreover, parameter learning will become less reliable as k becomes larger, which implies
more free parameters.
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One road to tackle these problems is referred as automatic model selection that
automatically determines k during parameter learning. An early effort is rival penalized
competitive learning (RPCL) (Xu et al. 1992; Xu 1998) with the number k automati-
cally determined during learning. Automatic model selection may also be approached via
appropriate priors on unknown parameters by Bayesian approaches. Two examples are
minimum message length (MML) (Figueiredo and Jain 2002) and variational Bayesian
(VB) (Corduneanu and Bishop 2001). Firstly proposed in (Xu 1995) and systematically
developed in the past two decades, Bayesian Ying-Yang (BYY) learning provides not only
a new model selection criteria but also a family of learning algorithms that is capable
of automatic model selection during parameter learning, with details referred to recent
tutorial and survey by (Xu 2010, 2012).
A systematic comparison has been recently made by (Shi et al. 2011) among MML, VB,

and BYY with two types of priors. One is the Jeffreys prior and another is a parametric
conjugate prior that imposes a Dirichlet prior on mixing weights and a joint normal-
Wishart prior on mean vectors and covariance matrices, shortly denoted as DNW.
Automatic model selection performances of these approaches are evaluated through
extensive experiments, with several interesting empirical findings. Among them, it has
been shown that BYY considerably outperforms both VB and MML. Different from VB
and MML that rely on appropriate priors to perform model selection, BYY is capable
of selecting model automatically even without imposing any priors on parameters, while
its performance can be further improved with appropriate priors incorporated. Similar
findings have also been obtained (Zhu et al. 2013), where a simplified BYY learning algo-
rithm with DNW priors is shown to outperform or at least be competitive to the existing
state-of-the-art image segmentation methods.
The algorithms by (Shi et al. 2011) for implementing BYY are featured by a gradient-

based line search with an appropriate stepsize. Learning becomes either unstable if this
stepsize is too large or slow and gets stuck in a local optimal solution if the stepsize is
too small. Given in Algorithm two (Xu 2009) and Equation (11) (Xu 2010), there is a
Ying-Yang two-step alternation algorithm that is similar to the EM algorithm without a
learning stepsize for the learning procedure. However, the Ying step (Xu 2010) ignores
the constrain that the covariance matrix of each Gaussian component must be positive
definite matrix, so the learning procedure may become unstable.
To constrain the covariance matrix as a positive definite matrix, this paper proposes

a projection operation into the Yang step, which results in a modified algorithm called
projection-embedded BYY learning algorithm or shortly denoted as pBYY. To facilitate its
implementation, we also add a Kullback Leibler divergence-based indicator into the algo-
rithm to improve the detection of redundant Gaussian components. Experiments have
shown that pBYY significantly outperforms not only the Jeffreys-based MML (Figueiredo
and Jain 2002) and the DNW-based VB but also the BYY learning algorithms with these
two types of priors (Shi et al. 2011), and it further avoids the cost of complicated and
tedious computation brought by the DNW prior.

Gaussian mixture model and four learning principles

GMM assumes that an observation x ∈ Rd is drawn from the following mixture of k
Gaussian distributions:
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q(x|θ) = ∑k
i=1 αiG (x|μi,�i) ,

θ = {α,μi,�i}ki=1 , αi ≥ 0,
∑k

i=1 αi = 1, (1)

where G(x|μ,�) denotes a Gaussian density with a mean μ and a covariance matrix �.
GMM can be also regarded as a latent variable model by introducing a binary latent

vector y = [
y1, y2, . . . , yk

]T , subject to yi ∈ {0, 1},∀i, and ∑k
i=1 yi = 1, the latent variable

yi = 1means that the random variable x is drawn from ith Gaussian component. The gen-
erative process of an observation x is interpreted as that y is sampled from a multinomial
distribution with probabilities α and then x is randomly generated by the ith Gaussian
component with yi = 1. Let X ∈ Rd×n denote the set of n i.i.d. d-dimension observation
samples, Y ∈ Rk×n denote the set of latent vectors for the observable set X, we have the
following:

q(X,Y |θ) = q(X|Y , θ)q(Y |θ),

q(X|Y , θ) =
n∏

t=1

k∏
i=1

G(xt|μi,�i)
yit ,

q(Y |θ) =
n∏

t=1

k∏
i=1

α
yit
i .

(2)

Learning a GMM consists of parameter learning for estimating all the unknown param-
eters in θ and model selection for determining the number of Gaussian components k,
which can be implemented differently under different learning principles.
The most widely used principle is called the maximum likelihood (ML), that is, we

estimate θ by
max

θ
q(X|θ),

q(X|θ) =
∑
Y

q(X|Y , θ)q(Y |θ) =
n∏

t=1
q(xt|θ).

(3)

The ML learning with a known k is typically made by the well known EM algorithm
(Redner and Walker 1984). However, an unknown k is poorly estimated by Equation (3)
when the sample number n is not large enough. The task of determining an appropriate
k is called model selection, which is usually made in a two-stage implementation with the
help of a model selection criterion. However, such a two-stage implementation suffers
from a huge computation and an unreliable estimation. The problems are tackled by auto-
matic model selection that automatically determines k during learning θ without such a
two-stage implementation.
There are three Bayesian related learning principles that can be implemented with such

the property of automatic model selection.
One is called minimum message length (MML) (Wallace and Dowe 1999), which is

actually an information theoretic restatement of Occam’s Razor. The MML was intro-
duced to learn GMMwith the property of automatic model selection (Figueiredo and Jain
2002). Learning is made by the following maximization:

max
θ

JMML(X|θ),

JMML(X|θ) = ln q(X|θ) + ln q(θ) − 1
2
ln |I(θ)|,

(4)

where |I(θ)| represents the determinant of Fisher information matrix with respect to
(w.r.t) �. Equation (4) is mathematically equivalent to a maximum a posteriori (MAP)
approach with modifying a proper prior q(θ) into being proportional to q(θ)/|I(θ)|1/2.
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Using the Jeffreys prior q(θ) ∝ |I(θ)|1/2 directly, Equation (4) degenerates to be ML
learning principle. To avoid this situation, Figueiredo and Jain (2002) considered the
following:

ln
q(θ)

|I(θ)|1/2 ≈ −ρ

2

k∑
i=1

lnαi − k(ρ + 1)
2

lnN , (5)

where ρ = d+0.5d(d+1) is the number of free parameters in each Gaussian component.
In (Shi et al. 2011), it has shown that some improvement can be obtained by an algorithm
that implements the MML principle with the help of a Dirichlet prior and a joint normal-
Wishart prior (shortly DNW prior).
The other Bayesian related learning principle is called variational Bayesian

(Corduneanu and Bishop 2001). The naive Bayes considers q(X|θ)q(θ) with a prior q(θ)

which takes a strong role. Unfortunately, a poor q(θ) may affect the learning perfor-
mance seriously. Such a bad influence can be smoothed out by considering the following
marginal distribution:

q(X) =
∫

q(X|θ)q(θ)dθ . (6)

However, it is difficult in computation with integral. The VB tackles this difficulty via
constructing a lower bound JVB with the help of Jensen’s inequality as follows:

max JVB, (7)

JVB = ∫
p(θ ,Y |X) ln

[
q(X,Y |θ)q(θ)
p(θ ,Y |X)

]
dY dθ .

ln q(X) ≥ JVB.

The goal is to choose a suitable posterior distribution p(θ ,Y |X) from a distribution
familyP , so that the lower bound JVB can readily be evaluated and yet sufficiently flexible.
One challenge is to provide a suitable distribution family P . In (Corduneanu and Bishop
2001), the family of prior distribution P can be approximately factorized as follows:

p(θ ,Y |X) = p(Y |X)
∏
i
p(θi|X). (8)

With q(X,Y |θ) by Equation (2) and a DNW prior q(θ), the above p(θi|X) can be
obtained with p(Y |X) and p(θj|X) ∀j �= i given by the following equation (Bishop and
Nasrabadi 2006):

p(θi|X) =
∫
j �=i p(Y |X)p(θj|X) ln q(X,Y , θ)dθdY∫

j �=i p(Y |X)p(θj|X) ln q(X,Y , θ)dθdY dX
.

A tight bound is unavailable to be obtained by Equation (8), which affects the learning

performances. Also, DNW is quite tedious and has hyperparameters
{
λ, ξ ,mi,

�−1
i
β

,
, γ
}

to be updated, which is time-consuming and may fall into local optimal. To avoid
the tedious computation of the DNW prior-based VB, an algorithm for implement-
ing VB principle is developed (Shi et al. 2011) with the help of the Jeffreys prior via
approximately using a block-diagonal complete data Fisher information (Figueiredo and
Jain 2002).
The last Bayesian related principle is BYY harmony learning. Firstly proposed by

(Xu 1995) and systematically developed in the past two decades, BYY harmony learning



Chen et al. Applied Informatics 2014, 1:2 Page 5 of 20
http://www.applied-informatics-j.com/content/1/1/2

on typical structures leads to new model selection criteria, new techniques for imple-
menting learning regularization, and a class of algorithms that approach automatic model
selection during parameter learning. Readers are referred to (Xu 2010, 2012, 2014) for
latest systematical introductions about BYY harmony learning.
Briefly, a BYY system consists of Yang machine and Ying machine, corresponding to

two types of decomposition, namely, Yang p(R|X)p(X) and Ying q(X|R)q(R) respectively,
where the data X is regarded to be generated from its inner representation R = {Y , θ}
that consists of latent variables Y and parameters θ , supported by a hyperparameter set
�. The harmony measure is mathematically expressed as follows:

H ( p||q) =
∫

p (R|X) p(X) ln
[
q(X|R)q(R)

]
dXdR. (9)

Maximizing this H(p||q) leads to not only a best matching between the Ying-Yang pair
but also a compact model with a least complexity. Such an ability can be observed from
several perspectives (see Section 4 in (Xu 2010)).
Applied to GMM by Equation (2), we have R = {Y , θ} and q(R) = q(Y |θ)q(θ |�). Com-

paring Equation (9) and Equation (7), the key difference is that there is only q(X,Y |θ)q(θ)

inside the basket ln[ ∗] for the BYY harmony learning while there is also a denomi-
nator p(θ ,Y |X) for the VB learning. Maximizing JVB leads to a best match between
q(X,Y |θ)q(θ) and p(θ ,Y |X), while maximizing H(p||q) leads to not only such a best
match but also a modeling of q(X,Y |θ)q(θ) in a least complexity. Readers are referred to
Section 4 and its figure five in (Xu 2012) for various aspects of this key difference, as well
as how they relate and differ fromMML andminimum description length (MDL) (Barron
et al. 1998; Rissanen 1978).
Maximizing H(p||q) leads to specific algorithms according to not only what types of

q(θ |�) are chosen for the Yingmachine but also how the structure of p(θ ,Y |X) is designed
for the Yang machine. Details are referred to Section 4.2 in (Xu 2010) and Section 3.2 in
(Xu 2012). For the GMM by Equation (2), we introduce two typical examples here.
One example is p(θ ,Y |X) given by Equation (8) together with a DNW prior. Putting

them into Equation (9), the DNW prior-based BYY harmony learning algorithm has
been developed for maximizing H(p||q) in (Shi et al. 2011). Extensive experiments have
shown that the DNW prior-based BYY considerably outperforms both VB and MML for
any type of priors and with whether or not hyper-parameters optimized. As the hyper-
parameters of DNW prior are optimized by its corresponding learning principle, BYY
further improves its performance and outperforms the others significantly, because learn-
ing hyper-parameters is a part of the entire BYY harmony learning. However, both VB
andMML deteriorate when there are too many free hyper-parameters, especially the per-
formance of VB drops drastically. The reason is that VB andMMLmaximize the marginal
likelihood via variational approximation and Laplace approximation, respectively, where
maximizing the marginal likelihood with respect to a free priori q(θ |�) makes it tend to
the maximum likelihood.
Another example is the following structure:

p(θ ,Y |X) = p(Y |X, θ)p(θ |X),

p(Y |X, θ) = q(X,Y |θ)∫
q(X,Y |θ)dY

,

p(θ |X) is free of structure. (10)



Chen et al. Applied Informatics 2014, 1:2 Page 6 of 20
http://www.applied-informatics-j.com/content/1/1/2

Maximizing H(p||q,�) with respect to p(θ |X) makes Equation (9) simplified into

maxθ H(θ), H(θ) = H0(θ) + ln q(θ),

H0(θ) = ∑n
t=1

∑k
i=1 p(i|xt , θ) ln [G(xt|μi,�i)αi] ,

p(i|xt , θ) = αiG(xt |μi,�i)∑k
i=1 αiG(xt |μi,�i)

. (11)

Automatic model selection and two-step alternation

Given a known k, learning the unknown parameters θ on a GMM is usually imple-
mented under themaximum likelihood principle by an EM algorithm (Redner andWalker
1984), which is one typical instance of Algorithm 1 featured by a two-step alternation. As
remarked at the bottom of the table, we get the EM algorithm after simply removing the
lines of trimming with

pit = p
(
i|xt , θnew

)
, ηi = 0, ρi = 0, i = 1, . . . , k, (12)

where p(i|xt , θ) is the Bayes posteriori probability as follows:

p(i|xt , θ) = αiG (xt|μi,�i)∑k
i=1 α

p
i G(xt|μi,�i)

,

θ = {θi}ki=1, θi = {αi,μi,�i}. (13)

Generally, ηi, ρi come from a priori distribution that takes a regularization role. This
role is shut off by simply setting them to zero. When ηi = 0, ρi > 0, the EM algorithm
is extended to the smoothed EM algorithm that was firstly proposed in 1997 (Xu 2010).
Also, we get the EM algorithm for naive Bayes with Jeffreys priori on αi,�i with

ηi = d + 0.5d(d + 1) − 1
2n

, ρi = d
2n

. (14)

Algorithm 1 Two-step alternation
Require: X = {x1, x2, . . . , xt , . . . , xn}, ηi, ρi
initialize all pi,t simply by 1/k.
Repeat the following two steps until convergence reached
Ying step:
for i = 1 to k do

ni = ∑n
t=1 pi,t + ηi, αnew

i = ni∑k
i=1 ni

,

μnew
i =

∑n
t=1 pi,txt
ni ,

�new
i =

∑n
i=1 pi,t(xt−μnew

i )(xt−μnew
i )

T

ni + ρiI.
end for
trimming: for i = 1, 2 . . . , k, discard the ith Gaussian
component if �j(θnew) → 0, and let k = k − 1
Yang step:
for t = 1, . . . , n, allocate xt to the ith Gaussian component
via a weight pi,t according to a learning principle.

Remark:

The algorithm is a modification of the one in table one of (Xu 2012) with
semi-supervised BYY omitted.
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An unknown k is poorly estimated via the ML learning by Equation (3), especially when
the sample number n is not large enough. The task of determining an appropriate k is
made by model selection, which is usually made in a two-stage implementation. The
first stage enumerates k to get a set of candidate models M with unknown parameters
of each candidate estimated by the EM algorithm. In the second stage, the best candi-
date is selected by a model selection criterion. Examples of such criteria include Akaike’s
information criterion (AIC) (Akaike 1974), Bayesian inference criterion (BIC), minimum
description length (MDL) criterion (which stems from another viewpoint but coincides
with BIC when it is simplified to an analytically computable criterion), etc (Barron et al.
1998; Rissanen 1978). However, this two-stage implementation suffers from a huge com-
putation because it requires parameter learning for each k ∈ M. Moreover, a larger k
often implies more unknown parameters, thus parameter estimation becomes less reli-
able and the criterion evaluation reduces its accuracy (see Section 2.1 in (Xu 2010) for a
detailed discussion).
One road to tackle the problems is referred to automatic model selection that means

to automatically determine an appropriate k during parameter learning. An early effort is
RPCL (Xu et al. 1992; Xu 1998). The key idea is that not only the winning Gaussian com-
ponent moves a little bit to adapt the current sample but also the rival (i.e., the second
winner) Gaussian component is repelled a little bit from this sample to reduce a dupli-
cated information allocation. As a result, an extra Gaussian component is driven far away
from data.
A batch learning version of RPCL learning may be also obtained as one instance of

Algorithm 1, simply with

p�t =

⎧⎪⎨
⎪⎩
1, �∗ = argmaxj p

(
j|xt , θnew

)
,

−γ , � = argmax� �=�∗ p
(
j|xt , θnew

)
,

0, otherwise,
(15)

by which learning is made on a cluster when p�t = 1 and penalizing or de-learning is made
on a cluster when p�t = −γ . Usually, the penalizing strength is set γ ≈ 0.005 ∼ 0.05.
When γ = 0, it degenerates to the so called hard-cut EM algorithm, see Equations (19)
and (20) in (Xu 1995).
According to its general formulation (e.g., see the last part of Section 2.1 in (Xu 2010)),

automatic model selection is a nature of learning a mixture of k individual substructures
with the following two features:

• There is an indicator �j(θ) on θ or its subset, based on which a particular structural
component j can be effectively discarded if its corresponding �j(θ) → 0. Taking the
GMM as an example, we may consider

�j(θ) = αj, or �j(θ) = αjTr
[
�j

]
. (16)

• With initial k large enough, there is an intrinsic mechanism that drives such an
indicator �j(θ) towards zero if the corresponding structure is redundant and thus
can be effectively discarded.

Three Bayesian-related approaches introduced in the previous subsection can all be
implemented with such a nature of automatic model selection. For both MML and VB,
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this nature comes from an appropriate prior q(θ |�). Favorably, BYY is capable of auto-
matic model selection even without imposing any priors on the parameters, and its
performance can be further improved as appropriate priors are incorporated. Actually,
the BYY harmony learning bymaximizingH(p||q) bases on q(R) = q(Y |θ)q(θ |�) to make
model selection, with q(Y |θ) in a role that is not only equally important to q(θ |�) but also
easy computing, while q(θ |�) is still handled in a way similar to MML and VB.
The BYY harmony learning by Equation (11) can be implemented by Algorithm 1, with

the Yang step given as follows:

pit = pit(θnew),

pit(θ) = p(i|xt , θ)
[
1 + δi,t(θ)

]
, (17)

δi,t(θ) = πt(θi) −
∑
i
p(i|xt , θi)πt(θi),

πt(θi) = ln [G(xt|μi,�i)αi] .

The algorithm implements a BYY harmony learning without a priori ln q(θ) in
Algorithm (1) by simply setting ηi = 0, ρi = 0 or a data smoothing based BYY harmony
learning when ηi = 0, ρi > 0. Readers are referred to Section 3.1 of (Xu 2010) for further
details. Also, we may implement the Jeffreys priori based on BYY harmony learning by
using Equation (14), see table one in (Shi et al. 2011).

Methods
Learning unreliability and convex combination

As introduced in Section 3.1 of (Xu 2010), the existing algorithms for implementing
BYY principle come from taking a gradient of H(θ) by Equation (11) w.r.t a subset φ of
parameters. That is, we consider

∇φH(θ) = ∇φH0(θ) + ∇φ ln q(θ),
∇φH0(θ) = ∑n

t=1
∑k

i=1 pi,t(θ)∇φπt(θi), (18)

with pi,t(θ) and πt(θi) given in Equation (17).
Based on this gradient, one attempt to update parameters is gradient-based local search.

The parameter φ can be updated iteratively as below:

φnew = φold + η∇φH(θ), (19)

where η > 0 is a small learning stepsize. Both the BYY learning algorithm given in
figure seven of (Xu 2010) and the BYY-Jef algorithm given in table one of (Shi et al. 2011)
are derived from Equation (19) with the help of some computing tricks and simplifica-
tion. However, the performance of such algorithms all depend on an appropriate stepsize.
Learning becomes either unstable if η is too large or slow and gets stuck in a local optimal
if η is too small. No such a learning stepsize is required for EM algorithms.
Another typical implementation attempts to make the BYY harmony learning by

Equation (11) also in a Ying-Yang two-step alternation, as previously suggested in Section
2.1 and table one of (Xu 2012). This two-step alternation algorithm is actually derived
from approximately letting pi,t(θ) in Equation (18) to be fixed at its value pit = pit(θnew)

such that we can solve the root of ∇φH(θ) = 0 subject to this fixation to get the Ying step
in Algorithm 1.
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Still, there lacks theoretical analyses that either guarantee the learning convergence
or provide the convergence conditions. Oppositely, we find empirically that the learning
process of this BYY two-step alternation may become unstable.
Actually, the root of∇φH(θ) = 0 subject to pit = pit(θnew) can be considerably deviated

from the true root of ∇φH(θ) = 0 since this true root is coupled with pit(θ) that varies
with θ . Not only correctly solving the root of ∇φH(θ) = 0 is a challenging task but also it
is unclear whether fixing pit = pit(θnew) makes the learning procedure become unstable.
From the likelihood by Equation (3) and Equation (1), it can be observed that

∇φ ln q(X|θ) =
n∑

t=1

k∑
i=1

p(i|xt , θ)∇φπt(θi), (20)

with p(i|xt , θ) given in Equation (13). Fixing p(i|xt , θ) = pit = p(i|xt , θnew), solving the
root of ∇φ ln q(X|θ) = 0 leads to the Ying step in Algorithm 1, or precisely the M step of
the EM algorithm while letting pit = p(i|xt , θnew) is just the E step of the EM algorithm.
As well known, the convergence of the EM algroithm has been theoretically proved. That
is, though the root of ∇φ ln q(X|θ) = 0 is also coupled with p(i|xt , θ) that varies with θ ,
this deviation actually does not affect the convergence.
The difference between pit = p(i|xt , θ) = p(i|xt , θnew) and pit = pit(θnew) is that

p(i|xt , θ), i = 1, . . . , k remains to be probability with θi, while pit(θi), i = 1, . . . , k given
in Equation (17) are no longer the probabilities and even take negative values some-
times. Thus pit(θnew) is more sparse than p(i|xt , θnew), and Yang step in the BYY theory
introduces a nature of automatical model selection into the iteration procedure.
To further investigate the influence of replacing p(i|xt , θnew) by pit(θnew) , we now focus

on Ying step, which can be reformulated as below:

αi =
∑n

t=1 pit
N

,

μi =
N∑
t=1

pit∑n
t=1 pit

xt ,

�i =
N∑
t=1

pit∑n
t=1 pit

(xt − μi)(xt − μi)
T . (21)

For EM algorithm, both μi and �i are constrained in the convex hulls spanned by xt
and (xt − μi)(xt − μi)T , respectively, because its pit still remains in the probability space.
However, in BYY algorithm, pit is no longer the probabilities and even take negative values
sometimes. Thus, μi and �i may break through their corresponding convex hulls. For
GMM, the model parameters θ must satisfy following constrains:

k∑
i=1

αi = 1,αi ≥ 0, ∀i ∈ {1, 2, . . . , k},

�i ∈ R
d×d+ ∀i ∈ {1, 2, . . . , k}, (22)

whereRd×d+ denotes the set of positive semidefinite matrix of size d×d. Thus the updated
αi and �i in BYY may no longer exist in their feasible regions sometimes. Instead of pro-
jecting αi and �i to the set of positive semidefinite matrix directly, we are motivated to
project ∇φH0(θ) back to the convex hull of local gradients ∇φπt(θi), t = 1, . . . , n, via
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projecting pit(θnew) onto the following set of probabilities to preserve more information
of αi and �i:

P =
⎧⎨
⎩p1, . . . , pk : pi ≥ 0,

k∑
i=1

pi = 1

⎫⎬
⎭ . (23)

For updating each mean vector μi, we are encouraged to use pit(θnew), because the
updating equation of μi is no longer a convex combination of all observable samples, and
the redundant components can be pushed outside the convex hull; thus, this operation
accelerates the speed of model selection.
The relative structure among the original {pit(θnew)} is encoded by the position of

the vector pHt = [
p1t(θnew), . . . , pkt(θnew)

]T in Rk . Projecting pHt from Rk to P in
Equation (23) means to find a vector pt = [

p1t , . . . , pkt
]T ∈ P that is the nearest one to

pHt and thus best keeps the relative structure within elements of pHt . To be specific, we
choose the nearest one in a sense of the least square distance, that is, we consider the
following optimization problem:

p∗
t = argmin

p∈P
∣∣∣∣p − pHt

∣∣∣∣2 . (24)

The above implementation maybe regarded as a two-step approach of making the BYY
harmony learning by Equation (17) under a principle of multiple convex combination
preservation (Xu 2014).

Fast approximation and pBYY-Jef algorithm

The problem Equation (24) is often encountered in the literature of applied mathemat-
ics and scientific computing and tackled by several algorithms such as variants of the
method of alternating projections (Bauschke and Borwein 1993) and variants of Dykstra’s
algorithm (Bauschke and Borwein 1994). However, these algorithms suffer from a huge
computing cost, especially on a large-size data set.
Alternatively, we propose a fast approximation algorithm with two steps, motivated by

the Kolmogorov’s criterion (see Chapter of 1 (Escalante and Raydan 2011)). Let
∏

S(x)
denote the projection point of an arbitrary point x ∈ R

k onto a non-empty closed convex
set S ⊂ R

n; Kolmogorov’s criterion states that z∗ = ∏
S(x) if and only if z∗ ∈ S and

(z − z∗)T (x − z∗) ≤ 0 for all z ∈ S , from which we can get the following:

Theorem 1. Let Fp = {p1, . . . , pk :
∑k

i=1 pi = 1} with P ⊂ Fp, we have
∏

P(x) =∏
P

∏
Fp(x) for an arbitrary point x ∈ R

k .

Proof. Let z′ = ∏
Fp(x), z

∗ = ∏
P(x) and z′∗ = ∏

P(z′). From (z−z′∗)T (z′−z′∗) ≤ 0 for
all z ∈ P , we have (z−z′∗)T (z′−x+x−z′∗) ≤ 0 or (z−z′∗)T (z′−x)+(z−z′∗)T (x−z′∗) ≤ 0.
It follows (z − z′∗)T (z′ − x) = 0 since z′ = ∏

Fp(x) is the projection point of x to the
hyperplane Fp and thus orthogonal to the vector z − z′∗ that lies in this hyperplane Fp.
Therefore, we get the inequality (z− z′∗)T (x− z′∗) ≤ 0, which holds for all z ∈ P and thus
z∗ = z′∗ according to Kolmogorov’s criterion. End.
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Based on this theorem, we split the projection into two steps. First, we consider the
following orthogonal projection of pHt onto the hyperplane Fp :

ft =
(
I − nnT

) (
pHt − f0

) + f0, f0 = 1
k
1, (25)

where n = 1√
k
1 is the normal vector of the hyperplane

∑k
i=1 pi = 1, f0 is the center point

of the closed convex set P , and all elements in 1 ∈ Rk×1 are equal to 1.
Second, we further project ft onto P . However, accurately calculating the projecting

point is still very time-consuming. Instead, we consider a fast approximation along the
line between ft and f0 as follows:

pt = λf0 + (1 − λ) ft (26)

with a minimum λ that make pt locate within P .
In a summary, we get a modified algorithm as one new instance of Algorithm 1. Its

Ying step remains unchanged but its Yang step gets {pit(θnew)} by Equation (17) and
then makes the nearest projection onto P by Equation (25) and Equation (26). For clar-
ity, we rewrite Algorithm 1 into a detailed form in Algorithm-2 that is dedicated to
implementing this projection-embedded BYY learning (shortly named pBYY).

Algorithm 2 pBYY algorithm
Require: X = {x1, x2, . . . , xt , . . . , xn}, and thresholds ε0, ε1,
k is initially set a large enough value
n = 1√

k
1, 1 = [1, . . . , 1]T , f0 = 1

k 1, and a large Tb,

Initialization: set T = 0 and pt = [
p1t , . . . , pkt

]T = f0 for all t.
Repeat the following two steps until convergence reached
T = T + 1
Ying step:
for i = 1 to k do

ni = ∑n
t=1 pi,t , αnew

i = ni∑k
i=1 ni

, μnew
i =

∑n
t=1 pi,txt
ni ,

�new
i =

∑n
i=1 pi,t(xt−μnew

i )(xt−μnew
i )

T

ni .
end for
trimming:
for i = 1 to k do

if αnew
i Tr

[
�new

i
]

< ε0, then discard i, let k = k − 1
if T > Tb and KLij < ε1 j �= i, then discard i, let k = k − 1
go to Initialization

end for
Yang step:
for t = 1 to n do

for i = 1 to k do
δi,t(θnew) =

ln p(i|xt , θnew) − ∑
j p

(
j|xt , θnew

)
ln p

(
j|xt , θnew

)
pit(θnew) = p(i|xt , θnew)

[
1 + δi,t(θnew)

]
where p(i|xt , θ) = αiG(xt |μi ,�i)∑k

i=1 αiG(xt |μi ,�i)
.

end for
pHt = [

p1t(θnew), . . . , pkt(θnew)
]T

Projection:
ft = (I − nnT )

(
pHt − f0

) + f0, pt = λf0 + (1 − λ)ft .
by a minimum λ that makes each element of pt nonnegative.

end for
End repeat
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The pBYY implementation repeats the Ying step and the Yang step alternatively. It
gets out of the repeating circle in two cases. One is that learning is finally completed
as the repeating circle converges with an unchanged k. The other is after trimming one
Gaussian component with k reducing by 1, after which it goes to the line of initialization
and start a new repeating circle. This re-initialization is helpful to avoid accumulation of
estimating bias, though it requires extra computing costs. Whether we need this depend-
ing on a trade-off of computing cost versus estimating accuracy. We may remove this
re-initialization by simply deleting the line ‘go to Initialization’.
Trimming a Gaussian component bases on an indicator �j(θ) as given in Equation (16).

Empirically, we find that there are scenarios and add the following new indicator for
detection:

KLij =
∫

G(x|μi,�i) ln
G(x|μi,�i)

G(x|μj,�j)
dx

= 1
2

[
ln

|�j|
|�i| − d + Tr(�−1

j �i) + dMi,j
]
,

dMi,j = (μi − μj)
T�−1

j (μi − μj). (27)

That is, we use the Kullback–Leibler (KL) divergence to measure the similarity between
two Gaussian components. When KLij becomes more close to 0 for any j �= i, we may
regard that the ith Gaussian component is redundant and thus discarded.

Results and discussion
Performance measures and algorithms

When samples locate in a space with its dimension less than 3, we can visualize and
judge the clustering performance manually. However, samples are usually located in a
high dimensional space for practical problems. Also, human evaluation is too subjective.
In this paper, we consider four typical measures for clustering performance and model
selection on number of clusters.
First, a traditional criterion to measure the performances of model selection could be

named as the correct selection rate (CSR), namely howmany times the algorithm gets the
accurate number of clusters among a large number of trials. Sometimes, this criterion is
argued to be too strict. For example, there exists four clusters in the set of observation
samples. If an algorithm splits one cluster into two but gets the other three clusters cor-
rectly, this trial gets a zero count in computing CSR, though the clustering result still has
some reasonable interpretation.
Second, one popular measure in the current literature is called variational information

(VI), which evaluates the distance between one clustering result C′ and the ground-truth
C as follows:

VI(C, C′) = H(C) + H(C′) − MI(C, C′),

H(C) = −
k∑

i=1
P(i) logP(i),

MI(C, C′) =
k∑

i=1

m∑
j=1

P(i, j) log2
P(i, j)
P(i)P(j)

,

P(i) = |Ci|
N

, P(i, j) = |Ci ∩ C′
j |

N
, (28)
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with |Ci| denoting the size of cluster Ci, where we get k clusters {Ci} in clustering C and
m clusters {Cj} in clustering C′. This MI denotes the mutual information that describes
how much we can reduce the uncertainty about the cluster of a random sample when
knowing its cluster in another clustering of the same set of observation samples (Wagner
and Wagner 2007). The smaller the VI value is, the better the performance is.
The last popular measure is called probabilistic Rand index (PRI). It further considers

to partition the set of all (unordered) pairs of observation samples in S into the disjoint
union of the following sets:

R11 = {pairs that are in the same cluster under C and C′}
R00 = {pairs that are in the different clusters under C and C′}
R10 = {pairs that are in the same cluster under C but in different ones under C′}
R01 = {pairs that are in the different clusters under C but in the same under C′}.

Assume that each sample is randomly assigned to one cluster. The probability that two
samples are in the same cluster in both partitions is p11 = 1

k · 1m . Corresponding to theR10,
R01, andR00, we get p10 = 1

k · (
1 − 1

m
)
, p01 = (

1 − 1
k
) · 1

m , and p00 = (
1 − 1

k
) · (

1 − 1
m

)
.

Then, PRI can be expressed as follows (Carpineto and Romano 2012):

PRI(C, C′) = w11n11 + w00n00
w11n11 + w10n10 + w01n01 + w00n00

, (29)

where nab = |Rab| and wab = − log2 (pab) for a, b ∈ {0, 1}. Simple analysis show that PRI
vary between 0 (no agreement on any pair of samples in clusterings C and C′) and 1 (when
two clusterings are equal).
Moreover, one popular application of clustering algorithms is image segmentation. To

evaluate the performances of semantic image segmentation, one widely used measure is
the covering rate (CR) (Richardson and Green 1997), by whcih a larger CR value indicates
a better performance.
We aim at comparisons of the proposed Algorithm-2 with those typical algorithms

investigated in (Shi et al. 2011). For clarification, we summarize as follows:

BYY-Jef and BYY-DNW: both come from table one and table six in (Shi et al. 2011).
MML-Jef: this was taken from table two in (Shi et al. 2011), same as the one given in

(Figueiredo and Jain 2002).
VB-DNW: this was taken from table six in (Shi et al. 2011), same as the one given in

(Bishop and Nasrabadi 2006; Corduneanu and Bishop 2001).

All algorithms are programmed in MATLAB R2010b on a 32-bit PC with 3.1 GHz Intel
Core i5-2400 CPU and 4 GB memory.
All data sets and source codes used in this paper can be downloaded from the website

http://www.cse.cuhk.edu.hk/~gychen/pBYY.

Empirical comparison

We start at three types of synthetic data sets illustrated in Figure 1. Each type of data set
is processed 500 independent trails with random initializations. In the algorithm imple-
mentations, the mean vector of each Gaussian component is initialized randomly, and
the initial mixing weight and initial covariance matrix of each Gaussian component are
computed with help of the k mean algorithm.

http://www.cse.cuhk.edu.hk/~gychen/pBYY
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Figure 1 Three synthetic data sets and their ground-truth clusters. For both (a) and (c), data sets of 60
samples are generated from a 2-dimensional 4-component GMM, with equal mixing weights of 1

4 ; (b) 75
samples are generated from a 2-dimensional 5-component GMM, with equal mixing weight of 1

5 . (Each red
curve indicates to a contour of equal probability density per component, and the read diamonds indicate the
Gaussian means).

The comparisons of performance of each algorithm are shown in Table 1. We observe
that pBYY significantly outperforms all the other algorithms almost in all the cases, with-
out using any priori. The only exception occurs on the data setGMM-b, where BYY-DNW
scored the best VI value though pBYY also got a value that is very close to the VI score.We
also observe how the choice of an appropriate learning stepsize affects the performance
of BYY-Jef and BYY-DNW. Closely related to the configurations of data sets, this choice
is a difficult task. On the configuration type of GMM-b similar to the datasets studied in
(Shi et al. 2011), experiments reconfirm the statement that BYY outperforms its coun-
terparts of VB and MML (Shi et al. 2011). However, the statement seemly no longer
holds for the configuration types of GMM-a and GMM-c, probably due to inappropri-
ate learning stepsizes. Favorably, this statement has been reconfirmed by pBYY on the
data sets of GMM-a and GMM-c with re-initialization period Tb being set as 5, namely,
pBYY still significantly outperforms not only VB-DNW and MML-Jef but also BYY-Jef
and BYY-DNW.
Table 2 presents a set of real-world data, where acidity, enzyme, and galaxy data sets

come from (Richardson and Green 1997). On these data sets, it is difficult to use CSR,
PRI, and VI because the information about the correct clustering result is unavailable.
Following (Bishop and Nasrabadi 2006), we compare the performances of these algo-
rithms on modeling the distributions of acidity, enzyme, and galaxy data sets visually.
As demonstrated in Figure 2, BYY-Jef, BYY-DNW, and pBYY all obviously outperform
VB-DNW and MML-Jef on the acidity and enzime, with pBYY performing best and

Table 1 Performance of each algorithm on three synthetic data sets after 500 trials, with
the initial number of Gaussian components is set as k = 20, where ‘a′

indicates the best
within its column

Data set GMM-a GMM-b GMM-c

Algorithms CSR VI PRI CSR VI PRI CSR VI PRI

VB-DNW 0.4660 1.0243 0.7730 0.5160 0.6264 0.8599 0.1060 1.3337 0.6469

MML-Jef 0.1700 3.2637 0.7345 0.1600 4.8235 0.7573 0.4140 58.0039 0.6388

BYY-Jef 0.2167 1.1135 0.7006 0.5533 0.6650 0.8257 0.0100 1.6889 0.4732

BYY-DNW 0.1433 1.1947 0.7039 0.0700 0.5373a 0.8760 0 1.7948 0.4622

pBYY 0.7260a 0.5852a 0.8692a 0.8840a 0.5482 0.8779a 0.6100a 1.1328a 0.7451a

For a good performance, we expect that the values of CSR and PRI are big and that the VI value is small.
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Table 2 Details of 1D real data sets

Data set Instances Input feature

Acidity 155 1

Enzyme 245 1

Galaxy 82 1

Figure 2 Density fitting on 1D real-world data sets. From left to right: acidity, enzyme, and galaxy data
sets; while from top to bottom: BYY-DNW, BYY-Jef, MML-Jef, VB-DNW, and pBYY algorithms. (Red curve
indicates the overall density function and green curve the density function per component).
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MML-Jef outperforming. VB-DNW. On the galaxy data set, pBYY and BYY-DNW per-
form similarly and both outperform BYY-Jef, VB-DNW, andMML-Jef. In summary, these
experiments confirm the previous findings obtained on synthetic data sets. In other
words, pBYY outperforms not only VB and MML but also BYY-Jef and BYY-DNW.
To further evaluate the performance of pBYY algorithm, we apply the proposed algo-

rithm to unsupervised image segmentation on 100 testing images from Berkeley Segmen-
tation Data Set (BSDS) www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html, where each image has five ground-truth segmentations hand-drawn by
persons, as illustrated in Figure 3. For a clustering-based image segmentation algorithm,
an important issue is how to get features as input vectors. In this paper, we use the fea-
tures proposed by Varma and Zisserman (2003), which has been used with promising
image segmentation results (Nikou et al. 2010; Shi et al. 2011; Zhu et al. 2013). To con-
centrate on the performance of clustering algorithms, we do not conduct post-processing
operations, such as region merging and graph cut, although they may further improve the
segmentation results.
We compare the performance of pBYY algorithm with several leading segmentation

algorithms, including gPb-owt-ucm (Arbelaez et al. 2011), multiscale graph decomposi-
tion (MN-Cut) (Cour et al. 2005), and mean shift (Comaniciu and Meer 2002). To make a
fair comparison, these algorithms are implemented under the same prespecified config-
uration. For MML-Jef, VB-DNW, MN-Cut, and pBYY, the initial cluster number is set to
be 20. For mean shift, the minimum region area is set at 5,000 pixels. For gPb-owt-ucm,
we use the segmentation results posted by (Arbelaez et al. 2011), and set the threshold to
be 0.5. These settings are fixed throughout all the evaluations. To simplify the computa-
tion, we also ignore the re-initiation step in Algorithm 2 to accelerate the speed of pBYY
algorithm.
Following the existing convention (Arbelaez et al. 2011), we use PRI, VI, and CR to

measure the comparison performance. The result of PRI, VI, and CR scores are shown
in Table 3. Moreover, pairwise comparisons of pBYY with each competing algorithm are
illustrated in Figure 4. By the PRI and CR measures, pBYY outperforms almost all the
algorithms.

Figure 3 Ground-truth segmentation results hand-drawn by five different human objects on the
image �296058.

www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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Table 3 Performance scores on the BSDS

BSDS500

Human Mean shift MN-Cut gPb-owt-ucm MML-Jef VB-DNW pBYY

PRI 0.88 0.8157 0.8066 0.7489 0.7851 0.7866 0.8196

VI 1.17 2.2912 2.5163 1.7539 3.4966 3.5589 2.8140

CR 0.72 0.439 0.393 0.439 0.325 0.325 0.487

The performance of each algorithm is evaluated separately against each of five human-drawn ground-truth segmentations
per image, and then their average is obtained as the score on this image. For the covering rate metrics, a larger value
indicates a better performance.

There is one exception at the center of the first row. The mean shift performs better
than pBYY on 53 pieces of images according to PRI. Figure 5 shows the comparisons on
four images randomly picked from the BSDS. Human judgement may clearly identify that
the segmentations by pBYY look much bettter than the counterparts by mean shift. By
the VI criterion, pBYY outperforms MML-Jef and VB-DNW but fails to win gPb-owt-
ucm, MN-Cut, and mean shift. Observed from Figure 5, a human judgement may identify
that the segmentations by pBYY are much better than the counterparts by gPb-owt-ucm,
MN-Cut, and mean shift. Seemingly, the VI is more suitable to measure the clustering-
based segmentations for a purpose of getting superpixels, while pBYY outperforms all
the algorithms for semantic image segmentation but not be so for segmentations towards
superpixels.

Conclusions
On learning the Gaussian mixture model, the existing BYY learning algorithms are fea-
tured by either a gradient-based local search that needs an appropriate stepsize to be
prespecified or a EM-like two-step alternation that does not request a learning step-
size but may lead to a unstable learning. The proposed pBYY still implements such a

Figure 4 Pairwise comparison of segmentation algorithms on the BSDS500. The coordinates of the blue
dots are the PRI, VI, and CR scores pBYY and its competing algorithms obtained per image. Red line
represents the boundary of equal performance by the two algorithms, and the boxed digits indicate the
number of images where one algorithm is better. For example, the last one shows MN-Cut outscores pBYY
merely on 4/100 images.
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Figure 5 Comparisons on four images from the BSDS500.

two-step alternation but removes the learning unreliability by an embedded projection,
outperforming the existing BYY learning algorithms significantly. In the machine learn-
ing literature, Bayesian approach with appropriate priori provides a standard direction of
developing learning algorithms for model selection, with VB and MML being two typi-
cal instances. In (Shi et al. 2011), BYY outperforms MML and VB with the help of the
same types of priories, but still fail to prevail with no priori. It has been shown in this
paper that pBYY without any priori has outperformed MML-Jef, VB-DNW, BYY-Jef, and
BYY-DNW, which confirms that the BYY best harmony learning provides a new per-
spective for automatic model selection even without a prior. Especially, this pBYY uses
an easy computation to prevail the tedious computation required for using the DNW
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prior. More interestingly, the semantic image segmentation performance on the Berkeley
Segmentation Data Set of 100 testing images have shown that pBYY outperforms not only
MML-Jef, VB-DNW, BYY-Jef and BYY-DNW but also gPb-owt-ucm, MN-Cut, and mean
shift.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GYC proposed the idea of pBYY algorithm and designed the experiment part with PAH, and LX improved the original
idea of pBYY algorithm and refined the presentation of this method. All authors read and approved the final manuscript.

Acknowledgements
Lei Xu was supported by a starting-up grant for the Zhi-Yuan chair professorship by Shanghai Jiao Tong University.
Pheng-Ann Heng was partly supported by Hong Kong Research Grants Council General Research Fund (Project No.
412513).

Received: 23 July 2014 Accepted: 15 October 2014

References
Akaike H (1974) A new look at the statistical model identification. Automatic Control IEEE Trans 19(6):716–723
Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. Pattern Anal

Mach Intell IEEE Trans 33(5):898–916
Bauschke H, Borwein JM (1993) On the convergence of von Neumann’s alternating projection algorithm for two sets.

Set-Valued Anal 1(2):185–212
Bauschke H, Borwein JM (1994) Dykstra’s alternating projection algorithm for two sets. J Approximation Theory

79(3):418–443
Barron A, Rissanen J, Yu B (1998) The minimum description length principle in coding and modeling. Inf Theory IEEE

Trans 44(6):2743–2760
Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning vol 1. Springer, New York
Carpineto C, Romano G (2012) Consensus clustering based on a new probabilistic rand index with application to

subtopic retrieval. Pattern Analysis and Machine Intelligence, IEEE Transactions on 34(12):2315–2326
Chiu KC, Xu L (2001) Tests of Gaussian temporal factor loadings in financial APT. In: Proc. of 3rd International Conference

on Independent Component Analysis and Blind Signal Separation, December 9-12, San Diego, California, USA.
pp 313-318

Corduneanu A, Bishop CM (2001) Variational Bayesian model selection for mixture distributions. In: Artificial Intelligence
and Statistics, vol 2001. Morgan Kaufmann, Waltham, MA. pp 27–34

Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. In: Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference On, vol 2. IEEE. pp 1124–1131

Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. Pattern Anal Mach Intell IEEE
Trans 24(5):603–619

Escalante R, Raydan M (2011) Alternating projection methods. vol 8. SIAM
Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. Pattern Anal Mach Intell IEEE Trans

24(3):381–396
Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using EM.

Mach Learn 39(2-3):103–134
Nikou C, Likas C, Galatsanos NP (2010) A Bayesian framework for image segmentation with spatially varying mixtures.

Image Process IEEE Trans 19(9):2278–2289
Reynolds DA (1995) Speaker identification and verification using Gaussian mixture speaker models. Speech Commun

17(1):91–108
Redner RA, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26(2):195–239
Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components (with

discussion). J R Stat Soc: Series B (Statistical Methodology) 59(4):731–792
Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471
Shi L, Tu S, Xu L (2011) Learning Gaussian mixture with automatic model selection: a comparative study on three

Bayesian related approaches. Frontiers Electrical Electron Eng China 6(2):215–244
Varma M, Zisserman A (2003) Texture classification: are filter banks necessary? In: Computer Vision and Pattern

Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference On, vol 2. IEEE. pp 691–698
Wallace CS, Dowe DL (1999) Minimummessage length and Kolmogorov complexity. Comput J 42(4):270–283
Wagner S, Wagner D (2007) Comparing clusterings: an overview. Universität Karlsruhe, Fakultät für Informatik
Xu L, Krzyzak A, Oja E (1992) Unsupervised and supervised classifications by rival penalized competitive learning. In:

Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, Proceedings. 11th
IAPR International Conference On. IEEE. pp 496–499

Xu L (1995) Bayesian-kullback coupled Ying-Yang machines: unified learnings and new results on vector quantization. In:
Proceedings of International Conference on Neural Information Processing, Oct 30–Nov.3, Beijing, China. pp 977–988

Xu L (1998) Rival penalized competitive learning, finite mixture, and multisets clustering. In: Neural Networks
Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference
On, vol 3. IEEE. pp 2525–2530



Chen et al. Applied Informatics 2014, 1:2 Page 20 of 20
http://www.applied-informatics-j.com/content/1/1/2

Xu L (2009) Learning algorithms for RBF functions and subspace based functions. In: Olivas E, et al. (eds). Handbook of
Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques. IGI Global, Hershey,
PA. pp 60–94

Xu L (2010) Bayesian Ying-Yang system, best harmony learning, and five action circling. Frontiers Electrical Electron Eng
China 5(3):281–328

Xu L (2012) On essential topics of BYY harmony learning: current status, challenging issues, and gene analysis
applications. Frontiers Electrical Electron Eng 7(1):147–196

Xu L (2014) Further advances on Bayesian Ying-Yang harmony learning. Appl Inform, to appear.
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and

the expectation-maximization algorithm. Med Imaging IEEE Trans 20(1):45–57
Zhu S, Zhao J, Guo L, Zhang Y (2013) Unsupervised natural image segmentation via Bayesian Ying–Yang harmony

learning theory. Neurocomputing 121:532–539

doi:10.1186/s40535-014-0002-2
Cite this article as: Chen et al.: Projection-embedded BYY learning algorithm for Gaussian mixture-based clustering.
Applied Informatics 2014 1:2.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Background
	Introduction
	Gaussian mixture model and four learning principles
	Automatic model selection and two-step alternation

	Methods
	Learning unreliability and convex combination
	Fast approximation and pBYY-Jef algorithm

	Results and discussion
	Performance measures and algorithms
	Empirical comparison

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

