
Liou et al. Applied Informatics (2015) 2:6
DOI 10.1186/s40535-015-0011-9
RESEARCH Open Access
Structure sensitive complexity for symbol-free
sequences

Cheng-Yuan Liou1*, Aleksandr A Simak1 and Jiun-Wei Liou2
* Correspondence:
cyliou@csie.ntu.edu.tw
1Department of Computer Science
and Information Engineering,
National Taiwan University, Taipei,
Taiwan
Full list of author information is
available at the end of the article
©
c
o

Abstract

The study proposes our extended method to assess structure complexity for symbol-free
sequences, such as literal texts, DNA sequences, rhythm, and musical input. This method
is based on L-system and topological entropy for context-free grammar. Inputs are
represented as binary trees. Different input features are represented separately within
tree structure and actual node contents. Our method infers tree generating grammar
and estimates its complexity. This study reviews our previous results on texts and
DNA sequences and provides new information regarding them. Also, we show new
results measuring complexity of Chinese classical texts and music samples with
rhythm and melody components. Our method demonstrates enough sensitivity to
extract quasi-regular structured fragments of Chinese texts and to detect irregular
styled samples of music inputs. To our knowledge, there is no other method that
can detect such quasi-regular patterns.
Background
This work introduces general complexity assessment on structure properties for different

types of inputs. Input sequences are represented as binary trees, the concept of L-system

(Wikipedia 2005) is borrowed to infer rewriting rules and build corresponding context-

free grammars, which are used later to assess the complexity score (Kuich 1970). This

complexity score is closely related to the notion of entropy (Shannon 1948). Current work

is intended to establish a general vision on such kinds of structural complexity assessment.

One initial work in this field focused on the complexity of musical rhythm (Liou et al.

2010), where binary tree representation almost perfectly fits. Later, our proposed method

was applied to the complexity of DNA sequences (Liou et al. 2013a, b). From this arose

the question of representation: how can other input types be transformed into a binary

tree, while keeping the complexity assessment the same? The third study adapted

complexity assessment to general texts encoded as symbol-free sequences (Liou et al.

2013a, b). Symbol-free representation was an important milestone—it allowed to extend

method for more generic input data, such as Chinese paragraphs. Finally, the study turns

back to music with an attempt to reconsider the initial assessment, redefine it, and make

method capable of naturally incorporating both musical melody and rhythm.

Complexity assessment

This section provides a generic version of the earlier proposed method for structural

complexity assessment (Liou et al. 2010). Our method in the essence remains the
2015 Liou et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
reativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
riginal work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40535-015-0011-9&domain=pdf
mailto:cyliou@csie.ntu.edu.tw
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

Liou et al. Applied Informatics (2015) 2:6 Page 2 of 17
same; however, basic data structure and definitions were modified to equip our

approach with new capabilities. Also, previous studies paid attention on the equiva-

lence of bracketed strings and binary tree rewriting systems. This study considered it

as being already justified, and bracketed strings do not appear in generalized version of

the method any more. Instead, we focused on other issues, updating the notation of

our formal grammars and proposing a better view on the classification step. It is worth

mentioning that all adjustments follow previous conclusions and important state-

ments, as well.

Binary tree

The procedure of transformation from arbitrary input encoding to the binary tree

depends on the nature of the input. Despite this, following remains the same: the

resulting binary tree reflects and corresponds to the structure of the input. We will not

provide exact specifications here on how to transform different kinds of input into

corresponding binary trees, but each following section dedicated to one particular kind

does provide such necessary explanation in detail.

Our binary tree defined as follow (Fig. 1):

1. Every sub-tree of a binary tree is a binary tree itself;

2. Every node except the root has a parent node;

3. Every node can have exactly two or none child nodes;

4. Every child node is labeled as left or right;

5. Every node can store some content inside.

Using a branching factor of two gives the tree two useful properties—it is relatively

simple to maintain and general enough to get in account inputs properties, which are

known to be local in linguistics (Gibson 1998) and music (Simonton 1984).

L-system

Every one of these trees can be considered as the result of consecutive development

starting from the root. Each development step corresponds to the next tree level, and

nodes at any current level are actually the result of development at a previous level.
Fig. 1 Made-up binary tree. Every proper sub-tree (a.) or node (b.) is a binary tree, but (c.) is not

Liou et al. Applied Informatics (2015) 2:6 Page 3 of 17
The process gradually continues until the original tree is replicated identically. Such

development mechanism can be formalized with biology-inspired parallel string

rewriting systems, or L-systems (Prusinkiewicz and Lindenmayer 1996). The L-system

is a special case of formal grammar (Chomsky 1956). The core of its capabilities is a

set of rewriting rules (it explains how every element shall be certainly rewritten),

which are applied in parallel, naturalistically reflecting the processes of cell division and

plant growth (Lindenmayer 1968). To replicate the tree, it is necessary to construct a

complete set of rewriting rules based on labels of the nodes and start the rewriting

procedure with the root node as the initial.
Methods
Rewriting rules

Every node in our binary tree, except the root, is labeled denoting whether it is the left

or right child. It is necessary to assign a unique label to the root node. Thus, every

node in the binary tree shall be labeled. Let symbol L states for the left child, R states for

the right one, and P denotes as tree root, all in uppercase as shown in the figure (Fig. 2).

Those labels form the set of rewriting system terminal symbols, and their corresponding

lowercase symbols l, r, and p are the set of non-terminals. Then, root node non-terminal

is the initial starting symbol (or axiom, in formal systems).

Next, for every node in a tree starting with the root, its corresponding rewriting rule

is created and placed into a rewriting set one by one (Fig. 3):

1. Left-hand side of rewriting rule contains node non-terminal symbol with the context

on a left defined by traversing parent nodes up to the root inclusively and

concatenating their labels.

2. Right-hand side of the rule contains node label itself, which is actually a terminal

symbol, followed by non-terminals in case the node has a child.

3. An additional operation of node content setting denoted by brackets at right-hand

side of the rule immediately after the terminal symbol with the content supposed to

be placed inside the node at rewriting moment.
List 1 demonstrates the rewriting rules set for this particular binary tree (Fig. 2) after

the procedure above is completed.
Fig. 2 Properly labeled binary tree

Fig. 3 Rewriting rule creation for dashed node with value 1. List 1. Rewriting rules inside the rewriting set
for binary tree from Fig. 2

Liou et al. Applied Informatics (2015) 2:6 Page 4 of 17
Thus, such parallel rewriting system is a non-ambiguous context-sensitive formal

grammar, which is capable of replicating the original tree identically (Chomsky 1959).

Homomorphism and isomorphism

Curious reader may note two things. Firstly, for every node in a binary tree, there is

exactly one corresponding rewriting rule. Secondly, some rewriting rules are quite

similar and may appear redundant. The last claim is also correct relative to the tree

nodes and even sub-trees. Indeed, some sections of a binary tree may share exactly the

same structure and even the same placement of node content. To extract such repeated

structures based on their similarity and bound the redundancy of rewriting set, two

auxiliary definitions are provided:

Homomorphism in rewriting rules

Two rewriting rules are homomorphic if and only if they assign equal contents to their

terminals.

In terms of a binary tree, it means that after the rewriting procedure has been com-

pleted, homomorphic nodes share the same content.

Isomorphism on level X in rewriting rules

Two rewriting rules are isomorphic on depth X if and only if they are homomorphic

and rules corresponding to their non-terminals are relatively isomorphic on depth X-1.

Isomorphism on level 0 indicates homomorphism.

After the rewriting has been completed, two sub-trees of a binary tree are considered

isomorphic (on depth X) if their root nodes share the same content and their descen-

dants form an equal structure and relatively share the same content (up to depth X-1).

It is possible to classify all rewriting rules from list 1 using a certain level of isomorphism

(Table 1).

It is good to place boundaries on isomorphism depth. Obviously, the lower bound

of isomorphism domain is 0 while the upper bound is the number of levels of the

Table 1 Classified rewriting rules with respect to isomorphism levels

Class Homomorphism Isomorphism-1 Isomorphism-2

1 p ↦ Plr

p ↦ Plr p ↦ PlrPl ↦ Llr

Pr ↦ Rlr

2 PLl ↦ L(1)lr Pl ↦ Llr
Pl ↦ Llr

PRl ↦ L(1) Pr ↦ Rlr

3 PLr ↦ R(2)
PLl ↦ L(1)lr Pr ↦ Rlr

PRr ↦ R(2)lr

4 PLLl ↦ L(3)PRRl ↦ L(3) PLr ↦ R(2) PLl ↦ L(1)lr

5 PLLr ↦ R(4)PRRr ↦ R(4) PRl ↦ L(1) PLr ↦ R(2)

6 PRr ↦ R(2)lr PRl ↦ L(1)

7 PLLl ↦ L(3)
PRr ↦ R(2)lr

PRRl ↦ L(3)

8 PLLr ↦ R(4) PLLl ↦ L(3)

PRRr ↦ R(4) PRRl ↦ L(3)

9 PLLr ↦ R(4)

PRRr ↦ R(4)

Liou et al. Applied Informatics (2015) 2:6 Page 5 of 17
original binary tree. However, such isomorphism depth bounds are quite meaning-

less. The lower bound does not involve any structural information, while the upper

bound does not leave anything to compare with the whole tree. Thus, the meaning-

ful lower and upper for the rewriting rules of isomorphism depth are 1 and depth of

the original tree minus 1.
Table 2 Final rewriting set after the classification is finished, rules positions are corresponding to Table 1

Class Homomorphism Isomorphism-1 Isomorphism-2

1 C1 ↦ C1C1

C1 ↦ C2C2 C1 ↦ C2C3C1 ↦ C2C3

C1 ↦ C2C3

2 C2 ↦ C4C5 C2 ↦ C3C4
C2 ↦ C4C5

C2 ↦ null C2 ↦ C5C6

3 C3 ↦ null
C3 ↦ C7C8 C3 ↦ C6C7

C3 ↦ C4C5

4 C4 ↦ null
C4 ↦ null C4 ↦ C8C9

C4 ↦ null

5 C5 ↦ null
C5 ↦ null C5 ↦ null

C5 ↦ null

6 C6 ↦ C7C8 C6 ↦ null

7 C7 ↦ null
C7 ↦ C8C9

C7 ↦ null

8 C8 ↦ null C8 ↦ null

C8 ↦ null C8 ↦ null

9 C9 ↦ null

C9 ↦ null

Liou et al. Applied Informatics (2015) 2:6 Page 6 of 17
Classification

The classification of rewriting rules is one of the most important steps for structural

complexity assessment. It reveals the hidden redundancy of a binary tree to the explicit

form, exploiting the redundancy of the corresponding rewriting set.

All isomorphic rewriting rules are labeled with one denoting class label (Table 1).

However, such a simple procedure is quite computationally expensive, despite the

chosen domain of rewriting rules or tree nodes. The isomorphism check will be

repeatedly performed dozens of times on the same inputs, expanding with factor of two

for every level of required isomorphism depth. A good illustration is a straightforward

implementation of Fibonacci numbers computation.

A more elegant and less computationally expensive way of doing this is to iteratively

assign class labels to all tree nodes depending on the node and its child node labels at

previous iteration (Fig. 4). It assumes breadth-first node ordering. The first iteration

considers only node content and is equal to the 0-depth isomorphism, or homomorph-

ism. Each of new iteration increases the isomorphism level by 1, thus, the total number

of iterations is bounded by the depth of the tree (considering also 0th initial iteration).

New class labels (final nodes values) shall be propagated to the corresponding

rewriting rules to compose a new rewriting set, for each rule replacing the left-hand

side with its class label and the right-hand side with class labels of its children (Table 2).

Some rules in the set will have duplicates. Or, alternatively, every rule occurs exactly

once but has an associated counter for how many times it actually appears. This

information is required for the following complexity assessment. All labels are

considered as non-terminal symbols, additional productions to the dedicated terminal

symbol shall be added to the set to conform the formality. The initial symbol is obvi-

ously a root node class label.
Fig. 4 Rewriting rules classification within tree nodes domain. (a.)—initial tree, (b.)—zeroth iteration
(homomorphism), (c.)—first iteration (isomorphism-1), (d.)—second iteration (isomorphism-2)

Liou et al. Applied Informatics (2015) 2:6 Page 7 of 17
This new parallel rewriting system is a stochastic context-free formal grammar

capable of reproducing the original binary tree as well as many other similar trees.

Complexity formula

As mentioned above, a set of classified rewriting rules is a context-free grammar. Thus,

the redundancy in the tree (its hidden structure) can be explored by assessing the com-

plexity of tree generating grammar (Liou et al. 2010), which is closely related to the en-

tropy notion for context-free grammars (Kuich, 1970).

The complexity of context-free grammar for binary trees can be evaluated by next

three steps:

1. Assume that there are n classes of rules and that each class Ci contains ni rules. Let

Vi ∈ {C1, C2, …, Cn}, Uij ∈ {Rij, i = 1, 2, …, n, j = 1, 2, …, ni}, and aijk ∈ {x, x = 1, 2,

…, n}, where each Uik has the following form:

Ui1→Vai11Vai12 ;Ui2→Vai21Vai22 ;…→…Uini→Vaini1
Vaini2

:

2. The generating function of Vi,Vi(z) defined as:
V i zð Þ ¼
Xni

p¼1
nipzV aip1 zð ÞVaip2 zð Þ
Xni

q¼1
niq

;

If Vi does not have non-terminals, set Vi(z) = 1.
3. After formulating the generating function Vi(z), we intend to find the largest value

of z, zmax, at which V1(zmax) still converges (V1 here denoted the root node rule of a

binary tree). After obtaining zmax of V1(z), we set R = zmax (the radius of

convergence). We define the complexity of a binary tree as:

K0 ¼ − ln R:

Numerical estimation

The algorithm for numerical estimation is suggested due to the fact that there is no

analytical solution for such a system of complex argument equations. We rewrite gen-

erating function and use region tests to approximate the complexity, as follows:

1. Rewrite generating function:

Vm
i z

0� � ¼
Xni

p¼1
nipz

0
Vm−1

aip1 z
0� �
Vm−1

aip2 z
0� �

Xni

q¼1
niq

V 0
i z

0� � ¼ 1

8>><
>>:

and
V 0
i z

0
� �

¼ 1:

2. Each iteration, calculate values from V 0
i z

0� �
to Vm

i z
0� �
. When Vm−1

i z
0� � ¼ Vm

i z
0� �

for all i, we say Vm
i reaches the convergence for z '. We set m = 200.

3. We look up for z
0
max using dichotomy search to check z' between 0 and 1 for Vm

i

convergence.

Liou et al. Applied Informatics (2015) 2:6 Page 8 of 17
DNA sequences

In modern bioinformatics, finding an efficient way to locate sequence fragments with

biological meaning is an important issue. There are two broadly used categories of

methods—sequence complexity (Koslicki 2011) and structure patterns analysis (Manna

and Liou 2006; Tino 1998; Peng et al. 1992). Koslicki (2011) presented a method for

computing the complexity of a sequence using redefined topological entropy, so the

complexity score will not converge to zero for longer sequences. According to Hao et al.

(Hao et al. 2000), we can find some rare subsequences by proposed graphical

representation for DNA sequences. Zhang and Zhang (1994) analyzed nucleotides

occurrence probabilities using four-nucleotide-related functions to draw 3D curves plots.

Our past study gave an attempt on combining statistical and structural properties for

input DNA sequences (Liou et al. 2013a, b) within single assessment. We replaced the

sequence of four nucleotides with a binary tree and assessed initial sequence complex-

ity, fragmenting the tree to smaller sub-trees and computing the complexity score for

each sub-tree independently. The study focused on encoding issue: how to represent a

four-nucleotide DNA sequence as a binary tree. We used four fixed tree representa-

tions, one for each nucleotide base A, T, C, and G (Fig. 5).

Thus, every input sequence element can be replaced with corresponding tree, and two

neighboring trees are combined together under one made-up common root, recursively

(Fig. 6).

All of the following steps, such as rewriting rules extraction, classification, and

numerical estimation of complexity scores remain the same as stated in the section

above.

The study also paid attention to comparing topological entropy (Koslicki 2011) and

presented a method of structural complexity, revealing the advanced nature of the latter

one. Both methods showed the ability to detect statistical properties of test sequences, but

only structural complexity assessment was sensitive to the changes of the sequence

sub-words order. In addition, for some input, Koslicki’s method cannot compute

amino-acid sequences efficiently (required fragment size growths exponentially with

sub-word length on alphabet size), but structural complexity does not pose such limi-

tations and can be applied to any amino-acids directly.

The study was successful in attempting to represent symbol sequences as binary trees

and encoding sequence symbols with fixed tree structures for the next structural com-

plexity assessment. However, a possible dependency of final complexity scores on

chosen fixed representations still was a matter of future study at that moment.

Below we have provided a plot (Fig. 7) of the front part of the structural complexity

score for the Zaire Ebola virus (ZEBOV), there are approximately 4000 values, one

value for each nucleotide. The whole length of the genome is about 19,000 nucleotides,

and it encodes seven structural proteins in the following order: nucleoprotein NP,
Fig. 5 Fixed tree structures for encoding corresponding nucleotides

Fig. 6 Complete binary tree for encoded nucleotide sequence

Liou et al. Applied Informatics (2015) 2:6 Page 9 of 17
polymerase cofactor VP35, VP40, GP, transcriptional activator VP30, VP24, and RNA

polymerase L. The blue and red lines represent two different fragmentation sizes, 64

and 32 nucleotides, respectively. The green dashed lines are what we found at genomic

database (U.S. National Library of Medicine), relative to the positions of complexity

scores amplitude changes. The first green line and the second green line are the start

(470) and the end (2689) positions of nucleoprotein coding sequence (CDS); this

segment tends to display a higher complexity with positive gaps and quite short but

deep negative spikes. The third green line is a polyA signal (3015…3026) for nucleo-

protein, intergenic region (3027…3031), and the transcription start signal (3032…

3043) for next polymerase protein complex VP35. The last green line is the beginning

of VP35 coding sequence (3129…4151)—the complexity scores return back typically

higher values.

Text sequences

Despite successful attempts at encoding input elements with fixed tree structures, two

questions were still waiting to be answered:

1. How can we efficiently encode a sequence for alphabet cardinalities higher than the

number of nucleotide bases? Encoding every alphabet symbol as fixed tree structure

requires deeper trees for larger alphabet symbol sets, and the complexity assessment

obviously tends to measure the dependencies between those fixed structures;

2. How do different encodings affect the complexity scores?
Fig. 7 Zaire Ebola virus complexity scores for 4000 nucleotides, two size segments, isomorphism level 2

Liou et al. Applied Informatics (2015) 2:6 Page 10 of 17
Our third study on structure complexity (Liou et al. 2013a, b) addressed both questions.

The study concerned regular text sequences, representing natural text as a symbol-free

sequence. Symbol-free sequences assume intermediate encoding from symbolic text to

binary strings. Two intermediate encodings were used: naive binary (BIN) and advanced

Lempel-Ziv-Welch (LZW) (Welch 1984). For English text, BIN encodes 27 alphabet

characters (26 Latin letters and space character) directly as a binary representation of

the symbol integer index. LZW is a lossless data compression with dictionary-based

encoder. LZW saves certain sub-strings from shortest to longest in the dictionary and

replaces their occurrences into input sequences with corresponding dictionary

indexes. After intermediately encoding every symbol-free binary string, fragments of

length 2 were represented with already known fixed tree structures (Fig. 8). Following

complexity assessment remains the same.

This study compared sequence complexity for both of the intermediate encodings.

Interestingly, the complexity for BIN remains quite uniform over the encoded sequence,

while LZW tends to have lower complexity scores in the front and higher scores in the

rear of the sequence. Since LZW saves regular patterns in the front part to absorb them

later in the rear end, there are not so many regular patterns in the end of the sequence.

Also, structural complexity was compared with linguistic complexity (LC) and topo-

logical entropy (TE). They also showed similar behavior on intermediate encodings.

The study analyzed intermediate encodings, but some parts of question 2 still remain.

Theoretically, there should be no difference in complexity score if all fixed tree replace-

ments are unique, and the replacement procedure is one-to-one function.

However, when we satisfied above two conditions using intermediate BIN encoding

and ran the test—our results were surprising (Fig. 9). We tried four different encodings

for the same binary string fragments “00,” “01,””10,” and ”11”—corresponding encoding

by fixed tree structures denoted by its nucleotide letter.

Later investigation showed that the intermediate encoding BIN encodes 27 sym-

bols as binary strings with length of 5 and fixed tree replacements are aligned to

length 2. Original symbols of input sequence became shredded because of this mis-

alignment. Thus, some fixed representation substitutions were formed by ending bit

of one symbol and starting bit of the next one. It is not important when one just

measures the relative complexity of incoming transmission stream. But when one

has to reveal structure complexity of input sequence—such alignment does matter.

Since fixed tree representation replaces 2-bit fragments of encoded string—inter-

mediate encoding should be aligned to a multiple of 2.

Chinese texts

In this section, Chinese texts are considered as an extreme case of possible application for

structural complexity. Alphabet size or symbol size of such input sequences is of the order
Fig. 8 Fixed tree structures to encode 2-bit segments of binary string

Fig. 9 Four different fixed structures encodings surprisingly reveals different complexity scores

Liou et al. Applied Informatics (2015) 2:6 Page 11 of 17
of thousand and can easily exceed the input sequence length. Such alphabet cardinality

may also create some restrictions on encoding due to the limitation of memory capacity

of modern computers.
Dataset

There are four great classical novels of the Chinese literature (Shep 2011), which are com-

monly regarded as the greatest and most influential of premodern Chinese fiction. Two of

those classical Chinese novels—“Dream of the Red Chamber” (Trad. Chinese “紅樓夢”)

by Cao Xueqin (18th century) and “Romance of the Three Kingdoms” (Trad. Chinese

“三國演義”) by Luo Guanzhong (14th century)—were decided for analysis with devel-

oped structural complexity method.
Processing

Intermediate encoding of input Unicode symbols (e.g., u4e00, u4e8c) removes the “u”

character and considers every 4 hex numbers of two bytes as ASCII symbols, 8 bits

each. Thus, all initial input symbols were encoded as 32-bit binary string and

concatenated together later. Next, four fixed tree representations were applied to

compose binary trees for every of 1024-bit segments of binary input string. Those

trees were used as input to perform structural complexity assessments with iso-

morphism level 8.
Results and discussion
The most fascinating result we have discovered so far is a significantly lower complexity

scores for sentences containing regular structures inside. When sentences display a

more regular structure than a regular narrative plot (for instance, some poetic inserts),

the structural complexity score tends to be lower. Below we provide a few instances of

this effect for both novels in descendent order from the highest (less regularity) to the

Liou et al. Applied Informatics (2015) 2:6 Page 12 of 17
lowest (more regularity) complexity scores. For those who do not feel confident in

Chinese, we would recommend paying attention to some regularities in the sequences

of the symbols. Some of those regularities are typical for classical Chinese, and some of

them are something more.

Dream of the Red Chamber:

1. Chapter 91:
和他好,他偏不和你好,你怎麼樣?你不和他好,他偏要和你好,你怎麼

2. Chapter 5:

「癡情司」,「結怨司」,「朝啼司」,「暮哭司」,「春感司」,「

3. Chapter 1:

便是『了』,『了』便是『好』;若不『了』便不『好』;若要『好』,

4. Chapter 13:

、賈敕、賈效、賈敦、賈赦、賈政、賈琮、賈 、賈珩、賈珖、賈琛、賈

5. Chapter 54:

、太婆婆、媳婦、孫子媳婦、重孫子媳婦、親孫子媳婦、姪孫子、重孫子

Romance of the Three Kingdoms:

1. Chapter 20:
建。建生廣陵侯劉哀。哀生膠水侯劉憲。憲生祖邑侯劉舒。舒生祁陽侯劉

2. Chapter 23:

也;不讀詩書,是口濁也;不納忠言,是耳濁也;不通古今,是身濁也;

3. Chapter 22:

之人,然後有非常之事;有非常之事,然後立非常之功。夫非常者,固

4. Chapter 102:

,方者為牛腹。垂者為牛舌,曲者為牛肋。刻者為牛齒,立者為牛角。細

1. 5. Chapter 20:

劉昂。昂生漳侯劉祿。祿生沂水侯劉戀。戀生欽陽侯劉英。英生安國侯劉

To our knowledge, there is no other method which can detect such quasi-regular

sections.
Music samples

An earlier study (Liou et al. 2010) proposed the complexity measure for musical

rhythm, representing it as a binary tree. Such representation seems very natural for

rhythm, because notes durations are generally square. The study focused only on the

rhythm ignoring another important music component—the melody. Melody gives in-

formation on tones transitions through time, specified by rhythm.
Fig. 10 Blues lesson 57, exercises 6 (left) and 7 (right)

Fig. 11 Multilayered music binary tree for Blues lesson 57 exercises 7. Nodes contain MIDI codes and NAN
values are dedicated to keep tree made-up upper part separate

Liou et al. Applied Informatics (2015) 2:6 Page 13 of 17
Encoding

This section explains how to incorporate the melody component of music into the as-

sessment. It is the first section where input data have multilayer structure (Fig. 10) and

corresponding binary tree representations are truly layered (Fig. 11). This occurs be-

cause two beats of rhythmic line can sound at the same time. Hypothetically, for text

sequences, it would be so when two characters take one position simultaneously, one

character takes more than one position or even both! Binary trees are capable of repre-

senting such input by definition. However, there is still an issue of how to bind tonal infor-

mation into the tree. Representing tonal information with already known fixed tree

structures could be a possible solution, but this would cause unexpected difficulty;

representing both rhythm and melody with only structural properties of a tree

makes them indistinguishable. Later, it causes issues similar to misalignment of data

intermediate encodings. The solution we proposed is to keep rhythm within the

structure of the binary tree and melody within the content of tree nodes. This

section is also novel with the idea to represent different kinds of input features with

separate tree properties.

Dataset

We decide to approbate the structural complexity method on a test dataset, the col-

lection of drum lessons for three styles: Rock, Blues, and Jazz. The collection was

created and published online by drummer of over 25 years, Rudy Lievens at his per-

sonal website (Lievens, 2013) devoted to drums. Exercising materials are provided

as note sheets and MP3 or MIDI files for listening and downloading. Exercises

download had some issues for few particular files, they were later eliminated from

the assessments. In total, after download, Rock had 7533 exercises, and Blues and

Jazz had 8594 and 12609 exercises, respectively. Typical lesson note sheets are

provided below (Fig. 10).
Fig. 12 Rock lesson 205, exercise 1 and exercise 5 (with and without typical hi-hat pattern)

Fig. 13 Rock universal set rules interconnections tree representation, complexity score 2.96

Liou et al. Applied Informatics (2015) 2:6 Page 14 of 17

Fig. 14 Blues universal set rules interconnections tree representation, complexity score 2.54

Liou et al. Applied Informatics (2015) 2:6 Page 15 of 17

Liou et al. Applied Informatics (2015) 2:6 Page 16 of 17
Processing

We conducted preprocessing for all data. The procedure works as uniformly as pos-

sible; a single implementation version was used to preprocess all dataset samples. The

procedure recognized and properly fixed the following cases: uncertain note onsets and

time lags, upbeats and syncopations, and triplets and grace notes. All notes were

adjusted to the most suitable positions. Samples with triplets had an additional trans-

formation with multiplication to 3/2 of their durations. Detected grace notes served as

indicators to extend their joined notes up to the proper length.

All samples are rather short and structurally similar to each other within one style.

Thus, straightforward structural complexity assessment on each sample with isomorph-

ism level 1 does not reveal fascinating results. We decided to assess complexity of each

style first and later try to distinguish the most atypical samples within each style. To do

so, an additional structure called the universal rewriting rules set is required. This uni-

versal rules set contains all rewriting rules from all the samples within one style corpus.

The complexity assessment procedure has been adapted for the current task and was

performed in three steps. Step 1 converted preprocessed MIDI files into its binary tree, ex-

tracted rewriting rules, and classified them with isomorphism level 1. Step 2 placed classi-

fied rewriting rules into universal rules set and accurately maintain their relative

probabilities (occurrence scores). The final step assessed the complexity for each sample

and each universal set. Numerical estimation of structural complexity for individual sam-

ples remains the same, with just one difference—instead of individual rules scores, corre-

sponding scores from universal rules sets were substituted. And to assess the complexity

of each style, numerical estimation was applied for each universal rewriting set directly.
Conclusion
The assessment of structural complexity on Rock, Blues, and Jazz universal sets reveals

the following scores as 2.96, 2.54, and 3.98, respectively. Also, every set has different

numbers of rewriting rules—142, 172, and 688. One might note significant dependency

between complexity scores and rewriting sets sizes. For example, Jazz has 688 rewriting

rules and the complexity score is dramatically higher. However, higher number of par-

ticipated in the set rules is not the only necessary component for a higher complexity

score. Rules relative probabilities and connections between the rules are actually more

important. For example, Blues has 172 rewriting rules, but the complexity score is still

significantly lower than Rock with 142 rules. Rock universal set has fewer rules, but

they are organized in a more comprehensive way. We tried to illustrate this with two

figures (Figs. 13 and 14).

Higher complexity score as well as larger size of universal set for particular corpus

might be the direct evidence on a more comprehensive music style. A larger universal

set with no dependency on the corresponding complexity score might recall to the

richness of music and overall musical expression.

Also, we identified some samples with extremely high complexity. Later examination

revealed that they are different from all the other samples of the style. The most evi-

dent and easy to understand are several Rock exercises with detected absence of stand-

ard for the style hi-hat beats rhythmic line. Figure 12 shows two samples with and

without such hi-hat pattern.

Liou et al. Applied Informatics (2015) 2:6 Page 17 of 17
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CY conceived the original concept of the study, participated in the design of methods, coordinated the research,
and process of drafting the manuscript. AA updated the methods applied in this research, collected and prepared
the data for the music analysis, carried out thoroughly the analysis of the music complexity, and drafted the
manuscript. JW participated in the analyses of text sequences and has been involved in revising it critically for
important content. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Ministry of Science and Technology MOST 103-2221-E-002-180 and MOST
104-2811-H-001-004. We also greatly appreciate Rudy Lievens permission to use his data in our research.

Author details
1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. 2Institute
of Statistical Science, Academia Sinica, Taipei, Taiwan.

Received: 15 April 2015 Accepted: 7 June 2015

References

Chomsky N (1956) Three models for the description of language. IRE Trans Inform Theory 2(3):113–124
Chomsky N (1959) On certain formal properties of grammars. Inf Control 2(2):137–167
Gibson E (1998) Linguistic complexity: locality of syntactic dependencies. Cognition 68(1):1–76
Hao B-L, Lee HC, Zhang S-Y (2000) Fractals related to long DNA sequences and complete genomes. Chaos, Solitons

Fractals 11(6):825–836
Koslicki D (2011) Topological entropy of DNA sequences. Bioinformatics 27:1061–1067
Kuich W (1970) On the entropy of context-free languages. Inf Control 16(2):173–200
Lievens, R. (2013). Retrieved 2013, from drum beats, drum lessons and Midi loops: http://www.edrumbeats.com/
Lindenmayer A (1968) Mathematical models for cellular interactions in development I. Filaments with one-sided inputs.

J Theor Biol 18(3):280–299
Liou C-Y, Wu T-H, Chia-Ying L (2010) Modelling complexity in musical rhythm. Complexity 15:19–30
Liou C-Y, Liou D-R, Simak AA, Huang B-S (2013a) Syntactic sensitive complexity for symbol-free sequence. In: LNCS,

4th International Conference, IScIDE 2013, Beijing, China, July 31 – August 2, 8261. pp 14–21
Liou C-Y, Tseng S-H, Cheng W-C, Tsai H-Y (2013b) Structural complexity of DNA sequence. Comput Math Methods Med

2013:11
Manna S, Liou C-Y (2006) Reverse engineering approach in molecular evolution: simulation and case study with enzyme

proteins, Proceedings of the 2006 International Conference on Bioinformatics & Computational Biology, BIOCOMP'06.
Las Vegas, Nevada, pp 529–533

Peng C-K, Buldyrev SV, Goldberger A, Havlin S, Sciortino F, Simons M et al (1992) Long-range correlations in nucleotide
sequences. Nature 356(6365):168–170

Prusinkiewicz P, Lindenmayer A (1996) The algorithmic beauty of plants. Springer-Verlag, New York
Shannon, C. (1948). The mathematical theory of communication. The Bell System Technical Journal, Vol. 27,

pp. 379–423, 623–656, July, October
Shep, S. J. (2011). Paper and print technology. In The Encyclopedia of the Novel, Volume 2 of Wiley-Blackwell

Encyclopedia of Literature (p. 596). John Wiley & Sons New Jersey, USA.
Simonton DK (1984) Melodic structure and note transition probabilities: a content analysis of 15,618 classical themes.

Psychol Music 12:3–16
Tino P (1998) Spatial representation of symbolic sequences through iterative function systems. Systems Man

Cybernetics A 29(4):386–393
U.S. National Library of Medicine. (n.d.). Retrieved from National Center for Biotechnology Information:

http://www.ncbi.nlm.nih.gov/
Welch TA (1984) A technique for high-performance data compression. Computer 17(6):8–19
Wikipedia. (2005). L-system. Retrieved October 1, 2013, from Wikipedia, the free encyclopedia: http://en.wikipedia.org/

wiki/L-system
Zhang R, Zhang C (1994) Z curves, an intuitive tool for visualizing and analyzing the DNA sequences. J Biomol Struct

Dyn 11(4):767–782

http://www.edrumbeats.com/
http://www.ncbi.nlm.nih.gov/
http://en.wikipedia.org/wiki/L-system
http://en.wikipedia.org/wiki/L-system

	Abstract
	Background
	Complexity assessment
	Binary tree
	L-system

	Methods
	Rewriting rules
	Homomorphism and isomorphism
	Homomorphism in rewriting rules
	Isomorphism on level X in rewriting rules
	Classification
	Complexity formula
	Numerical estimation
	DNA sequences
	Text sequences
	Chinese texts
	Dataset
	Processing

	Results and discussion
	Music samples
	Encoding
	Dataset
	Processing

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

