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Abstract

Compared with supervised feature selection, selecting features in unsupervised
learning scenarios is a much harder problem due to the lack of label information.
In this paper, we propose sparsity preserving score (SPS) for unsupervised feature
selection based on recent advances in sparse representation technique. SPS evaluates
the importance of a feature by its power of sparse reconstructive relationship preserving.
Specially, SPS selects features that minimize reconstruction residual based on
sparse representation in the space of selected features. SPS aims to jointly select
features by transforming data from a high-dimensional space of original features to
a low-dimensional space of selected features through a special binary feature selection
matrix. When the sparse representation is fixed, our searching strategy is an essentially
discrete optimization and our theoretical analysis guarantees our objective function can
be easily solved with a closed-form solution. The experimental results on two face data
sets demonstrate the effectiveness and efficiency of our algorithm.
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Introduction
In many areas, such as text processing, biological information analysis, and combina-

torial chemistry, data are often represented as high-dimensional feature vectors, but

often only a small subset of features is necessary for subsequent learning and classifica-

tion tasks. Thus, dimensionality reduction is preferred, which can be achieved by either

feature selection or feature extraction (Guyon & Elisseeff 2003) to a low dimensional

space. In contrast to feature extraction, feature selection aims at finding out the most

representative or discriminative subset of the original feature spaces according to some

criteria and maintains the original representation of features. During recent years,

feature selection has attracted much research attention and widely used in a variety of

applications (Yu et al. 2014; Ma et al. 2012b).

According to the availability of labels of training data, feature selection can be classi-

fied into supervised feature selection (Kira et al. 1992; Nie et al. 2008; Zhao et al. 2010)

and unsupervised feature selection (He et al. 2005; Zhao & Liu 2007), (Yang et al.

2011; Peng et al. 2005). Supervised feature selection selects features according to label

information of each training data. Unsupervised methods, however, are not able to

obtain label information directly, and they frequently select the features which best

preserve the data similarity or manifold structure of data.
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Feature selection mainly focuses on search strategies and measurement criteria. The

search strategies for feature selection can be divided into three categories: exhaustive

search, sequential search, and random search. The exhaustive search aims to find out the

optimal solution from all possible subsets. However, it is NP-hard and thus it is impractical

to run. Sequential search methods, such as sequential forward selection and sequential

backward elimination (Kohavi & John 1997), start from an empty set or the set of all candi-

dates as the initial subset selected and successively add features to the selected feature or

eliminate features from a subset one by one. The major drawback of the traditional sequen-

tial search methods relies heavily on search routes. Although the sequential methods do

not guarantee the global optimality of selected subset, they have been widely used because

of their simplicity and relatively low computational cost even for large-scale data. Plus-l-

minus-r (l-r) (Devijver 1982), a slightly more reliable sequential search method, considers

deleting features that were previously selected and selecting features that were previously

deleted. However, it only partially solves the limit of search routes and brings in additional

parameters. The random search methods, such as the random hill climbing and its exten-

sion sequential floating search (Jain & Zongker 1997), take advantage of randomized steps

of the search and select features from all candidates with a chance probability per feature.

Measurement criterion is also an important research direction in feature selection. Data

variance (Duda et al. 2001) ranks the score of each feature by the variance along a dimension.

The measurement criterion of data variance finds features that are useful for representing

data; however, these features may not be useful for preserving discriminative information.

Laplacian score (He et al. 2005) is a recent locality graph-based unsupervised feature selec-

tion algorithm. Laplacian score reflects locality preserving power of each feature.

Recently, Wright et al. present a Sparse Representation-based Classification (SRC)

(Wright et al. 2009) method. Afterwards, sparse representation-based feature extraction

becomes an active direction. Qiao et al. (2010) present a Sparsity Preserving Projections

(SPP) method, which aims to preserve the sparse reconstructive relationship of the

data. Zhang et al. (2012) recently present a graph optimization for dimensionality

reduction with sparsity constrains, which can be viewed as an extension of SPP.

Clemmensen et al. (2011) provide a sparse linear discriminant analysis with a sparse-

ness constraint on projection vectors.

As we know, feature selection with direct connection to SRC has not emerged. In this

paper, we use SRC as a measurement criterion to design an unsupervised feature selection

algorithm called sparsity preserving score (SPS). The formulated objective function, which

is an essentially discrete optimization, aims to seek a binary linear transformation such

that in a low-dimensional space the sparse representation coefficients are preserved. As

the sparse representation is fixed, our theoretical analysis guarantees our objective func-

tion can be easily solved with a closed form, which is optimal solution. SPS simply ranks

the score of each feature by Frobenius norm of sparse linear reconstruction residual in the

space of selected features.

Background
Unsupervised feature selection criterion

Let xi ∈ R
m × 1 be the i th training sample and X = [x1, x2,…, xN] ∈ R

m ×N be a matrix

composed of entire training samples. The unsupervised criterion to select m ' (m ' <m)

features is defined as
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minAloss X;XUA
� �þ μΩ UA

� �

where A is the set of the indices of selected features, UA is the corresponding m ×m-

sized feature selection matrix, and XUA is reconstruction of the reduced space in

Rm′�N to the original space in Rm×N. loss(⋅) is the loss function, and μΩ(UA) is the

regularization with μ as its parameter.

Sparse representation

Given a test sample y, we represent y in an overcomplete dictionary whose basis vectors

are training sample themselves, i.e., y = Xβ. If the system of linear equation is underde-

termined, this representation is naturally sparse. The sparsest solution can be sought by

solving the following l1 optimization problem (Donoho 2006; Cands et al. 2006):

β̂ ¼ argminβjjβjj 1; s:t:; y ¼ Xβ ð1Þ

This problem can be solved in polynomial time by standard linear programming algo-
rithms (Chen et al. 2001).

Methods
We formulate our strategy to select n(n <m) features as follows: given a set of unlabeled

training samples xi ∈ R
m × 1, i = 1,..,N, learn a feature selection matrix P ∈ Rm×n such that P

is optimal according to our objective function. For the task of feature selection, P is

required to be a special 0–1 binary matrix which satisfies two constraints: (1) each row of

P has one and only one non-zero entry of 1 and (2) each column of P has at most one

non-zero entry. Accordingly, the sum of entries in each row equals 1 and the sum of

entries in each column less than or equals 1. For test, x
0
i ¼ UTxi is the new representation

of χi where x ' i(k) = xi(k) if the kth feature is selected, and otherwise x
0
i kð Þ ¼ 0.

We define the following objective function to minimize the sparse linear reconstruc-

tion residual and measure the sparsity by the l1 -×norm of coefficients.

minP; βi;i¼1;…;Nf g
J P; βi
� �

:¼
s:t:;

XN

i¼1
jjPxi−PDiβij j F

2
þ λjjβijj 1

Xm

j¼1
P i; jð Þ ¼ 1

Xn

i¼1
P i; jð Þ≤1;

P i; jð Þ ¼ 0 or1

ð2Þ

Here, Di = [x1,…, xi − 1, xi + 1,…, xN] ∈ R
m × (N − 1) is the collection of training samples

without the ith sample, βi is the sparse representation coefficient vector of χi over Di,

and λ is a scalar parameter. The items in line 1 of (2) are approximation and sparse

constraints in the features selected space, respectively. (2) is a joint optimization of P

and βi (i = 1, …,N).

Since P and βi (i = 1,..,N) are dependent on each other, this problem cannot be solved

directly. We update the variables alternately with others fixed.

By fixing βi (i = 1,..,N), removing terms irrelevant to P and rewriting the first term in

(2) in a matrix form, the optimization problem (2) is reduced to
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minPtrace PΓΓTPT
� �

s:t:;
Xm

j¼1
P i; jð Þ ¼ 1Xn

i¼1
P i; jð Þ≤1

P i; jð Þ ¼ 0 or1

ð3Þ

where Γ = [γ1,…, γN], and γi = xi −Diβi.

Under the constraints in (3), we suppose

P(i, ki) = 1, then

trace PΓΓTPT
� � ¼

Xm

i¼1
P i; :ð ÞΓΓTPT i; :ð Þ

¼
Xm

i¼1
P i; :ð ÞΓf g P i; :ð ÞΓf gTg

¼
Xm

i¼1

XN

j¼1
Γ ki; jð Þf g2

ð4Þ

The optimization problem in (3) is converted into computing the sparsity preserving

score of each feature, which is defined as

Score ið Þ ¼
XN

j¼1
Γ ki; jð Þf g2; i ¼ 1;…;m ð5Þ

And then we rank and select the n smallest ones from Score(i), i = 1,…,m. Without

loss of generality, suppose the n selected features are indexed by k�i ; i ¼ 1;…; n. We can

construct the matrix P as

P i; jð Þ ¼ 1; j ¼ k�i
0; otherwise

�
ð6Þ

By fixing P, removing terms irrelevant to βi (i = 1, …,N), the optimization problem (3)
is reduced to the following l1 optimization problem

min βi;i¼1;…;Nf g
XN

i¼1
jjPxi−PDiβijj 2

F þ λjjβijj 1 ð7Þ

The iterative procedure is given in Algorithm 1. The initial solution of βi can be cal-
culated directly in the original space of selected features, and it can be used as a good

initial solution of the iterative algorithm (Yang et al. 2013).

Note that since the P obtained via the first iteration is 0–1 matrix, some values of

features (corresponding to j≠k�i ) are equal to zero in the second iteration. Thus, it is

meaningless to compute the coefficient vector βi for features whose values are equal

to zero. In other words, P becomes a stable value after the first iteration. Thus, we

give non-iterative version of Algorithm 1, i.e., Algorithm 2, where we compute βi in

the original space as

min βi jjxi−Diβijj 2
F þ λjjβijj 1 ð8Þ

Some standard convex optimization techniques or TNIPM in (Kim et al. 2007) can
be used to solve βi. In our experiments, we directly use source code provided by au-

thors in (Kim et al. 2007).
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Algorithm 1: Iterative procedure for sparsity preserving score

Algorithm 2: Non-iterative procedure for sparsity preserving score
Results and discussion
Several experiments on Yale and ORL face datasets are carried out to demonstrate the

efficiency and effectiveness of our algorithm. In our experiments, all samples are not

pre-processed. Our algorithm is an unsupervised method, and thus, we compare our

Algorithm 2 with other four representative unsupervised feature selection algorithms

including data variance, Laplacian score, feature selection for multi-cluster data (MCFS)

(Cai et al. 2010), and spectral feature selection (SPEC) (Zhao & Liu 2007) with all the

eigenvectors of the graph Laplacian. In all the tests, the number of the nearest neigh-

bors in Laplacian score, MCFS, and SPEC is taken to be half of the number of training

images per person.

For both datasets, we choose the first five and six images, respectively, per person for

training and the rest for testing. After feature selection, the recognition is performed by

the “L2”-distance based 1-nearest neighbor classifier. Table 1 reports the top perform-

ance as well as the corresponding number of features selected, and Fig. 1 illustrates the

recognition rate as a function of the number of features selected. As shown in Table 1,

our algorithm reaches the highest or comparable recognition rate at the lowest dimen-

sion of feature selected space. From Fig. 1, we can see that with only a very small
Table 1 The comparison of the top recognition rates and the corresponding number of features
selected

Methods Training date

Yale ORL

5 6 5 6

Data variance 0.6889 (704) 0.6800 (829) 0.9450 (2503) 0.9563 (2112)

Laplacian score 0.7111 (434) 0.7067 (952) 0.9450 (2390) 0.9563 (1901)

MCFS 0.6556 (974) 0.6933 (825) 0.9250 (1593) 0.9500 (588)

SPEC 0.7111 (836) 0.7200 (780) 0.9150 (2563) 0.9500 (2350)

SPS 0.7333 (551) 0.7333 (569) 0.9450 (2355) 0.9563 (1823)



(b) Yale

(a-1) first 5 images (a-2) first 6 images

(b-1) first 5 images (b-2) first 6 images

Fig. 1 Recognition results of the feature selection methods with respect to the number of selected features
on (a-1, a-2) Yale and (b-1, b-2) ORL

Yan Applied Informatics  (2015) 2:8 Page 6 of 8
number of features, SPS can achieve significant better recognition rates than the other

methods. It can be interpreted from two aspects: (1) SPS jointly selects features and

obtain the optimal solution of a binary transformation matrix, while the other methods

only add features one by one. Thus, SPS considers the interaction and dependency

among features. (2) Features selected with sparse reconstructive relationship preserving

are capable of enhancing recognition performance.
Table 2 The comparison of average top recognition rates

Methods 5 6 7 8

(a) ORL

Data variance 0.970 0.978 0.989 0.980

Laplacian score 0.960 0.976 0.981 0.984

MCFS 0.950 0.958 0.960 0.955

SPEC 0.940 0.947 0.958 0.950

SPS 0.985 0.989 0.993 0.991

Data variance 0.636 0.706 0.790 0.717

Laplacian score 0.646 0.712 0.789 0.683

MCFS 0.602 0.684 0.783 0.745

SPEC 0.621 0.685 0.762 0.735

SPS 0.669 0.728 0.808 0.756
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We randomly choose five and six images, respectively, per person for training and

the rest for testing. Since the training set is randomly chosen, we repeat this experi-

ment ten times and calculate the average result. The average top performances ob-

tained are reported in Table 2. The results further verify that SPS can select more

informative preserving feature subset.
Conclusions
This paper addresses the problem on how to select features with power of sparse

reconstructive relationship preserving. In theory, we prove our feature subset is the

optimal solution in closed form if the sparse representation vectors are fixed. Experi-

ments are done on the ORL and Yale face image databases, and results demonstrate

our proposed sparsity preserving score is more effective than data variance, Laplacian

score, MCFS, and SPEC.
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