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Background
Kernel-based learning algorithms gained interest since the last few years. Mercer’s theo-
rem is used in kernel-based learning algorithms to map the input data using some non-
linear kernel function to some higher dimensional feature space, known as reproducing 
kernel Hilbert space (RKHS), where the linear operations are easily performed on the 
input data. These kernel methods stem originally from support vector machines (Vapnik 
and Vapnik 1998; Hearst et al. 1998), a powerful tool in handling classification problems 
in the neural network architecture. Kernel principal component analysis (KPCA) and 
kernel regression (Scholkopf et al. 1997; Takeda et al. 2007; Hardle and Vieu 1992) also 
show desirable performance regarding classification in the complicated environment of 
statistical signal processing. However, these are batch mode methods and suffer the bur-
den of high computational cost and memory usage. These issues are replaced by intro-
ducing the online kernel methods, such as kernel least mean square (KLMS) (Liu et al. 
2008), kernel affine projection algorithm (KAPA) (Liu and Principe 2008), kernel recur-
sive least squares (KRLS) (Engel et al. 2004; Liu et al. 2015) and extended kernel recursive 
least squares (Ex-KRLS) (Liu et al. 2009) algorithms. These online kernel algorithms are 
very much in common nowadays regarding system identification, weather forecasting, 
nonlinear channel equalization, prediction of stationary as well as nonstationary time 
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series. KLMS algorithm uses stochastic gradient method to minimize the mean square 
error-based cost function in its formulation on the transformed input data. In KAPA the 
gradient noise of the KLMS algorithm is removed by minimizing the cost function using 
the smoothed nonlinear Newton recursion method.

On the other hand, online learning algorithms based on fractional signal processing is 
introduced using the concept of fractional order calculus in the formulation of the algo-
rithm. Ortigueira’s work (Ortigueira et al. 2002; Ortigueira and Machado 2006; Ortigueira 
2011) mainly considered as the pioneer in the field of fractional signal processing. Tseng 
et al. designed one- and two-dimensional finite impulse response filter using constraints 
regarding fractional derivative (Tseng and Lee 2012, 2013, 2014). Wang introduces frac-
tional zero phase filtering based on Riemann–Liouville integrals (Wang et  al. 2014). 
Raja and Qureshi introduced fractional least mean square algorithm (FLMS) (Zahoor 
and Qureshi 2009) for their work regarding system identification. In the recent past, 
FLMS algorithm has been applied to various multidimensional signal processing prob-
lems including parameter identification of nonlinear controlled autoregressive system, 
parameter estimation of CARMA systems (Zahoor and Chaudhary 2015), identification 
of Box-jenkins system, dual channel speech enhancement, Brownian motion modeling, 
performance analysis of the bessel beamformer, acoustic echo cancelation (Masoud and 
Osgouei 2011; Dubey and Rout 2012; Akhtar and Yasin 2012; Chaudhary et al. 2013), etc.

Recently a modified fractional least mean square algorithm (MFLMS) (Shoaib and 
Qureshi 2014a) is developed for stationary and nonstationary time series prediction, 
more specifically Mackey glass. Convergence of the MFLMS algorithm is also tested 
regarding the prediction of chaotic series along with different noise variances. To 
remove the guesswork existing in tuning the step size parameter of the MFLMS algo-
rithm (Shoaib and Qureshi 2014b), a stochastic gradient-based method is introduced to 
adapt the step sizes of the MFLMS algorithm according to the mean square error and 
then its application towards the prediction of Mackey glass as well as Lorenz time series.

Kernel functions are widely used in obtaining the solution of fractional order nonlin-
ear differential equations as discussed in Shoaib and Qureshi (2014a). They use different 
kernel function to model the fractional order nonlinear differential equation and then 
use heuristic computing techniques like genetic algorithm, particle swarm optimization 
(PSO), differential evolution (DE) to minimize the error function. Here in this paper we 
introduced a mechanism that combined the adaptive fractional learning algorithms and 
online kernel-based filtering algorithms. This idea greatly helps in improving the perfor-
mance in solving nonlinear problems.

The main aim of this research work is the development of a kernel fractional affine 
projection algorithm (KFAPA). A method is introduced to adjust the Riemann–Liouville 
fractional derivative to formulate the KAPA algorithm to minimize the cost function 
based on mean square error using gradient-based smoothed nonlinear recursive method. 
The proposed algorithm is then applied on the prediction of only the X-component of 
the three-dimensional chaotic Lorenz time series and nonlinear channel equalization.

Organization of the paper is as follows: in “Affine projection and kernel affine projection 
algorithms” section, the brief introduction of affine projection and kernel affine projection 
algorithm is presented. “Fractional signal processing approach” section, presents the intro-
duction of fractional signal processing and the proposed kernel fractional affine projection 
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algorithm. The experimental results are discussed in “Experimental results” and “Conclu-
sion and future work” sections comprises of conclusion along with future directions.

Affine projection and kernel affine projection algorithms
Affine projection algorithm

Affine projection algorithm (Haykin 2013) uses smoothed Newton’s recursion to for-
mulate the algorithm. By minimizing the cost function, we use the following input and 
desired sequence [x(i), d(i)] as

The gradient with respect to w is

The weights of the APA is adjusted using stochastic Newton method as

Initialize the weight vector to zero, ηt is the small positive step size. Here we perform a 
line search along the gradient descent direction to compute the weight vector. The cor-
responding steepest descent and Newton’s recursion is

ǫ is the small positive constant, which prevents division by zero errors. To smoothen the 
Newton’s recursion and to increase the convergence speed we proceed as

where the matrix R is invertible and strictly positive definite.

Kernel affine projection algorithm

Poor performance is examined, where the mapping between x and d is somehow highly 
nonlinear. Nonlinear mapping is introduced in Weifeng et  al. (2011) as ϕ(x(i)), which 
is a powerful model wTϕ(x(i)) than wTx. So using this model and finding w through 
smoothed stochastic Newton method may prove an efficient method towards nonlinear 
filtering as APA ensures for linear problems. Using the sequence [ϕ(i), d(i)] to parameter 
weight vector w as

(1)J (w) =
1

2

n∑

i=0

(d(i)− wTx(i))2

(2)∇wJ = −

n∑

i=1

x(i)(d(i)− wTx(i))

(3)w(i) = w(i − 1)− ηt(∇
2
wJ )

−1∇wJ

(4)w(i) = w(i − 1)+ ηtx(i)[x
T(i)x(i)+ ǫI]−1[d(i)− x(i)Tw(i − 1)]

(5)w(i) = w(i − 1)+ ηt[x(i)x
T(i)+ ǫI]−1x(i)[d(i)− x(i)Tw(i − 1)]

(6)w(i) = w(i − 1)+ ηt[x(i)x
T(i)+ ǫI]−1[x(i)d(i)− x(i)x(i)Tw(i − 1)]

(7)w(i) = w(i − 1)+ ηt[Ru + ǫI]−1[rdu − [Ru + ǫI]w(i − 1)]

(8)J (w) =
1

2

n∑

i=0

(d(i)− wTϕ(i))2
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Minimizing the cost function, using the stochastic gradient descent, the weight adapta-
tion equation becomes

and stochastic Newton method becomes

Using Searle’s matrix identity

The corresponding weight update equation becomes

Therefore, KAPA only needs a K × K  matrix inversion which can be computed easily by 
sliding window trick.

Fractional signal processing approach
Introduction to fractional derivative

Fractional calculus is a widely used signal processing algorithm autoregressive (AR) sys-
tems identification. It has been utilized in various fields of signal processing effectively 
including echo cancelation, dual channel speech enhancement and performance analysis 
of the bessel beamformer. Before going towards the proposed algorithm, we here present 
some basic concepts about the fractional calculus that focus on fractional integral and 
derivative.

Iν is the fractional integral of order ν. The fractional derivative is given as

Dν is the fractional derivative and ν is the integer. To add little more detail we pre-
sent Riemann–Liouville fractional derivative as follows. The fractional derivative of 
f (t) = (t − a)α is,

where a and α are real constants.

Proposed kernel fractional affine projection algorithm

Here we introduced a mechanism to update the weights of kernel affine projection algo-
rithm with the inclusion of fractional derivative term.

(9)w(i) = w(i − 1)+ ηt�(i)[d(i)−�Tw(i − 1)]

(10)w(i) = w(i − 1)+ ηt[�(i)�(i)T + ǫI]−1�(i)[d(i)−�Tw(i − 1)]

(11)[�(i)�(i)T + ǫI]−1�(i) = �(i)[�(i)T�(i)+ ǫI]−1

(12)w(i) = w(i − 1)+ ηt�(i)[�(i)T�(i)+ �I]−1[d(i)−�Tw(i − 1)]

(13)Ivf (t) =
1

Ŵ(α)

∫ T

0

(t − ν)ν−1f (τ ) dτ

(14)

(Dν f )(t) =

(
d

dt

)n

(In−ν f )(t)

(Dν f )(t) =
1

Ŵ(α)

(
d

dt

)n ∫ T

0

(t − τ )n−ν−1f (τ ) dτ

(15)Dν(t − a)α =
Ŵ(1+ α)

Ŵ(1+ α + ν)
(t − a)α−ν

(16)w(i) = w(i − 1)− ηt(∇
2
wJ )

−1∇wJ −∇ν
wJ
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and the fractional derivative of the cost function is written as

The weight update equation of the kernel fractional affine projection algorithm is

where ηt and µt are the small positive step sizes, typically lie between 0 and 1. In practice, 
we do not have access to the transformed weights w in the feature space, so the updated 
weights have to be evaluated through expansion coefficients as

Now to evaluate the aj(i), setting the initial guess w(0) = 0, and adopted procedure as

similarly the K × K inversion in 17 is evaluated by the following Searle’s identity

where A = �(i − 1)T�(i − 1)+ ǫI, B = �(i)Tϕ(i), C = ϕ(i)T�(i) and D = ϕ(i)Tϕ(i)

+ǫ and the fractional part of (17) is efficiently evaluated as

ν is the order of fractional derivative and the term (e(i)Tϕ(i))w1−ν(i) in Eq. 17 is evalu-
ated using Eq. 20.

Experimental results
This section presents experimental results to reveal the performance of the proposed 
algorithm. The performance of KFAPA is validated by the prediction of X-component of 
Lorenz time series and equalization of nonlinear channel.

(17)

(
∂

∂w(i)

)ν

J =− e(i)x(i)Dνw(i)

(
∂

∂w(i)

)ν

J =− e(i)x(i)

[
1

Ŵ(2− ν)
w1−ν(i)

]

(18)

w(i) = w(i − 1)+ ηt�(i)[�(i)T�(i)+ �I]−1[d(i)−�Tw(i − 1)]

+ µt(e(i)
Tϕ(i))

w1−ν(i − 1)

Ŵ(2− ν)

(19)w(i) =

i∑

j=1

aj(i)ϕ(j), ∀i > 0.

w(0) = 0

w(0) = ηd(1)ϕ(1) = a1(1)ϕ(1)

... =
...

w(i − 1) =

i−1∑

j=1

aj(i − 1)ϕ(j)

(20)

(
A B
C D

)−1

=

(
(A − BD−1C)−1 −A−1B(D− CA−1B)−1

−D−1C(A − BD−1C)−1 (D− CA−1B)−1

)

(e(i)Tϕ(i))w1−ν(i) = (e(i)Tϕ(i))




i�

j=1

aj(i)ϕ(j)




1−ν
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Time series prediction

One of the useful and demanding problems in signal processing is predicting a future 
value in the nonlinear time series. The mechanism used for one step prediction is by 
taking time series history to estimate a future value. A nonlinear time series is defined 
as a sequence of scalers or vectors that depends on time. Let us consider a time series 
T. S. = {u(n0),u(n1),u(n2), . . . ,u(nk−1),u(nk),u(nk+1),u(nk+2), . . .}. To predict a future 
value at a certain time, we use a process known as time embedding. The output contains 
a tapped delay line and then form a matrix shifted by one time sample in each column 
and is written as

Columns of the above-mentioned matrix represents the input used for training or 
testing. M is the order of the filter. The first input pattern is delivered to predictor for 
estimating the future value. Then the weight vector is updated by a law based on the 
function of mean square error as given below.

 The cost function in Eq. 22 is used to adapt the parameters and Fig. 1 shows the archite-
cure of the predictor.

Lorenz time series

Lorenz series exhibits chaotic flow. Series is three dimensional, nonlinear, and determin-
istic, expressed as the following nonlinear partial differential equations.

(21)





u(nk) u(nk+1) ... u(nk+N−1)

u(nk−1) u(nk) ... u(nk+N−2)

u(nk−2) u(nk−1) ... u(nk+N−3)

... ... ... ...
u(nk−M−1) u(nk−M) ... u(nk+N−M)





(22)e = |u(nk+1 − û(nk+1))|
2

(23)

dx

dt
= σ(y(t)− x(t))

dy

dt
= − x(t)z(t)+ γ x(t)− y(t)

dz

dt
= x(t)y(t)− Bz(t)

Fig. 1 Architecture of the predictor
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Parameters of the Lorenz system on which its behavior becomes chaotic are σ = 10, 
γ = 28 and B = 8

3. Set the initial values as x(0) = 1, y(0) = 1, z(0) = 1, a sampling period 
is taken 0.01 second, also it is fixed to obtain the sample data using first-order approxi-
mation method. The state trajectory of the Lorenz system is shown in Fig.  2.The next 
experiment is performed with training sample points 500–1000 of the X-component of 
the Lorenz series, and test sample points 1000–1200 to evaluate the performance of the 
proposed algorithm. The time embedding length or the order of the filter M is 5 for this 
experiment. To validate the performance of the proposed algorithm, learning curves in 
terms of mean square error (MSE) as a figure of merit are plotted in Fig. 3.

The learning curves clearly demonstrate the performance of the proposed algorithm is 
better in terms of mean square error in comparison with is counterparts. The X-compo-
nent of the Lorenz time series is corrupted with white noise having different variances, 
the algorithms including the proposed one is tested and the results are displayed in the 
tabular form. Mean square error is observed after 200 Monte Carlo simulations and is 
listed in Table  1. Throughout this experiment, Gaussian kernel is used and the kernel 
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width is set as 0.1.The results show that in low noise levels, the proposed algorithm 
achieve better results in comparison to high noise levels.

Nonlinear channel equalization

Nonlinear channel model considered here in this experiment as a test bench, consists 
of serial connection of linear filter and a memoryless nonlinearity. This type is com-
monly used to model digital communication channels and digital magnetic recording 
channels. A binary signal [b(1), b(2), b(3),…,b(k)] is fed into a nonlinear channel, while 
adding static nonlinearity and additive white Gaussian noise the signal will be observed 
as [r(1), r(2), r(3),…,r(k)]. The channel model is defined as h(i) = b(i)+ 0.5b(i − 1) and 
output is r(i) = h(i)− 0.9h(i)2 + n(i), where n(i) is the additive white Gaussian noise 
having variance of 0.01. We aim here in this experiment to reproduce the original sig-
nal with low error rate. The time embedding length or the order of the filter is 5. 5000 
symbols are used to train the coefficients of the nonlinear channel and the mean square 
error during training is displayed in Fig. 4. Figure 5 shows that during training, the MSE 
curve of the proposed algorithm is slightly better than its counterparts and the results 
are also displayed in tabular form in Table 2. The performance of the proposed algorithm 
is also tested in Fig.  6 by inserting an abrupt change at iteration 500. It can be easily 

Fig. 4 Architecture of nonlinear channel

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

M
S

E

 

 

APA
KAPA
KFAPA

Fig. 5 Learning curve of nonlinear channel equalization
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observed that the proposed algorithm is able to recover efficiently in comparison with its 
counterparts and the improvement of 0.1 dB is achieved. 

Atmospheric CO2 concentration forecasting

The data consist of monthly average CO2 concentrations (in parts per million by volume 
ppmv) in atmosphere collected at Mauna Loa observatory Hawaii, between 1958 and 
2008, with 600 total observations. the first 400 points are used for training while the 
other 200 for testing. The kernel function for this specific problem handles long-term 
rising, seasonal effect, periodicity and some irregularities. The kernel function is

k1(x, x
′
) is used to model the rising trends and is defined as

a1 is the amplitude and a2 is the kernel width. A seasonal effect is modeled through peri-
odic kernel with a time period of 1 year. A Gaussian kernel is used to put decay away 
from the exact periodicity.

(24)k(x, x
′

) = k1(x, x
′

)+ k2(x, x
′

)+ k3(x, x
′

)+ k1(x, x
′

)

(25)k1(x, x
′

) = a21exp

(
−
(x − x

′
)2

2a22

)
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Fig. 6 MSE curves for KFAPA of nonlinear channel equalization with an abrupt change at iteration 500

Table 2 Performance comparison of APA, KAPA and KFAPA in nonlinear channel equaliza-
tion

Algorithm MSE (dB)

APA 0.6 ± 0.2

KAPA 0.55 ± 0.05

KFAPA 0.4 ± 0.1
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a3, a4 and a5 are magnitude, smoothing factor and the periodic component. To handle 
the irregularities in the observed dataset k3(x, x

′
) is defined as

a6 is magnitude, a7 and a8 are the smoothing factor and shape parameter, respectively. 
To model the noise component k(x, x′

) is defined as

a9 and a10 are magnitude and smoothing factor of the colored noise. a11 is the magnitude 
of white noise. The values of these kernel function parameters are listed in Table 3.

The CO2 concentration in atmosphere is modeled as a function of time and is shown 
in Fig. 7. Prediction performance is shown in Fig. 8, and the performance in mean square 
error is plotted in Fig. 9. The figure shows the MSE curve.  

(26)k2(x, x
′

) = a23exp

(
−
(x − x

′
)2

2a42
−

sin2 π((x − x
′
))

a25

)

(27)k3(x, x
′

) = a26

(
1+

(x − x
′
)2

2a28a
2
7

)−a28

(28)k4(x, x
′

) = a29

(
(x − x

′
)2

2a210
+ a211δ(x − x

′

)

)

Table 3 Kernel function parameter values

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

66 0.075 0.40 0.0576 1.0878 0.6600 0.4167 0.78 0.18 3.7509 0.1900
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Fig. 7 CO2 concentration trend from year 1958 to year 2008
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Static function approximation

This example is about static function approximation, where the desired output data are 
generated by

where τ ≥ 0, input x(i) is uniformly distributed over [τ , τ + 2], and [v(i)] is a zero mean 
Gaussian noise with variance σ 2

v . In this experiment, N = 2000 samples are generated 
with σ 2

v = 0.01, ω = 2 and τ = 1.0. 500 samples are used for training and another 200 
are used for testing. The test pattern is shown in Fig. 10. Figure 11 illustrates the conver-
gence curves for APA, KAPA and KFAPA. MSE denotes the mean square error. Simula-
tion results clearly indicate that the performance of the proposed algorithm has been 
perfectly good as listed in Table 4.

(29)d(i) = cos(ωx(i)− τ )+ v(i)
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Fig. 8 Forecasting prediction result of KFAPA for CO2 concentration
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Fig. 9 Testing mean square error for KFAPA of CO2 concentration
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Conclusion and future work
In this paper, a new kernel fractional affine projection algorithm is presented. Affine pro-
jection and kernel affine projection algorithms has also been discussed. One application 
of predicting a chaotic three-dimensional Lorenz system is presented that demonstrates 
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Fig. 10 Test samples
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Fig. 11 MSE of APA, KAPA and KFAPA for static function approximation

Table 4 Training and testing MSE

Algorithm Training MSE Testing MSE

APA 0.35 ± 0.05 0.3 ± 0.02

KAPA 0.2 ± 0.04 0.22 ± 0.05

KFAPA 0.11 ± 0.1 0.13 ± 0.3
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the performance of the proposed algorithm in comparison with LMS, APA, KAPA and 
in terms of mean square error as a figure of merit. Proposed algorithm is also tested 
on nonlinear channel equalization. This new formulation is another contribution in the 
field of nonlinear signal processing.
Authors’ contributions
BS proposed and implemented the idea. Dr IMQ and Dr IU are supervisor and cosupervisor respectively. SAB and SUK did 
the drafting and paper writng process. All authors read and approved the final manuscript.

Author details
1 Department of Electronic Engineering, International Islamic University, H-10, Islamabad, Pakistan. 2 Electrical Engineer-
ing Department, Air University, Sector: E-9, Islamabad, Pakistan. 3 Department of Electronic Engineering,  
School of Engineering and Applied Sciences, ISRA University, Sector I-10, Islamabad, Pakistan. 

Competing interests
The authors declare that they have no competing interests.

Received: 20 April 2015   Accepted: 19 November 2015

References
Akhtar P, Yasin M (2012) Performance analysis of bessel beamformer and LMS algorithm for smart antenna array in 

mobile communication system. In: Emerging Trends and Applications in Information Communication Technologies, 
vol 281. Springer Berlin Heidelberg, pp 52–61

Chaudhary NI, Raja MAZ, Khan JA, Aslam MS (2013) Identification of input nonlinear control autoregressive systems using 
fractional signal processing approach. Sci World J 2013:1–13 (ID 467276)

Dubey SK, Rout NK (2012)  FLMS algorithm for acoustic echo cancellation and its comparison with LMS. In: Proceedings 
of the 1st international conference on IEEE recent advances in information technology (RAIT)

Engel Y, Mannor S, Meir R (2004) The kernel recursive least-squares algorithm. IEEE Trans Signal Process 52(8):2275–2285
Hardle W, Vieu P (1992) Kernel regression smoothing of time series. J Time Ser Anal 13(3):209–232
Haykin S (2013) Adaptive filter theory, 5 edn. Pearson Education, Limited, India (revised)
Hearst MA et al (1998) Support vector machines. Intell Syst Appl IEEE 13(4):18–28
Liu W, Pokharel PP, Principe JC (2008) The kernel least-mean-square algorithm. IEEE Trans Signal Process 56(2):543–554
Liu W et al (2009) Extended kernel recursive least squares algorithm. IEEE Trans Signal Process 57(10):3801–3814
Liu W, Principe JC, Haykin S (2011) Kernel adaptive filtering: a comprehensive introduction, vol 57. John Wiley & Sons
Liu W, Principe JC (2008) Kernel affine projection algorithms. EURASIP J Adv Signal Process 1(2008):784292
Liu W, Principe JC, Haykin S (2010) Kernel recursive least-squares algorithm. In: Kernel Adaptive Filtering: A Comprehen-

sive Introduction, pp 94–123
Masoud G, Osgouei SG (2011) Dual-channel speech enhancement using normalized fractional least-mean-squares 

algorithm. In: Proceedings of the 19th Iranian conference on electrical engineering (ICEE)
Ortigueira, MD, Machado JT, de Almeida R (2002) Special issue on fractional signal processing and applications. Signal 

Proc 82:1515
Ortigueira MD, Machado JAT (2006) Fractional calculus applications in signals and systems. Signal Proc 86(10):2503–2504
Ortigueira MD (2011) Fractional calculus for scientists and engineers, vol 84. Springer Science and Business Media
Raja MAZ, Chaudhary NI (2015) Two-stage fractional least mean square identification algorithm for parameter estimation 

of CARMA systems. Signal Process 107:327–339
Scholkopf B, Smola A, Muller KR (1997) Kernel principal component analysis. Artificial Neural Networks ICANN 97. 

Springer, Berlin Heidelberg, pp 583–588
Shoaib B, Qureshi IM (2014) A modified fractional least mean square algorithm for chaotic and nonstationary time series 

prediction. Chin Phys B 23(3):030502
Shoaib B, Qureshi IM (2014) Adaptive step-size modified fractional least mean square algorithm for chaotic time series 

prediction. Chin Phys B 23(5):050503
Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 

16(2):349–366
Tseng CC, Lee SL (2012) Design of linear phase FIR filters using fractional derivative constraints. Signal Process 

92(5):1317–1327
Tseng CC, Lee SL (2013) Designs of two dimensional linear phase FIR filters using fractional derivative constraints. Signal 

Proc 93(5):1141–1151
Tseng CC, Lee SL (2014) Designs of fractional derivative constrained 1D and 2D FIR filters in the complex domain. Signal 

Proc 95:111–125
Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York
Wang J et al (2014) Fractional zero phase filtering based on the Riemann Liouville integral. Signal Proc. 98:150–157
Zahoor RMA, Qureshi IM (2009) A modified least mean square algorithm using fractional derivative and its application to 

system identification. Eur J Sci Res 35(1):14–21


	Kernel fractional affine projection algorithm
	Abstract 
	Background
	Affine projection and kernel affine projection algorithms
	Affine projection algorithm
	Kernel affine projection algorithm


	Fractional signal processing approach
	Introduction to fractional derivative
	Proposed kernel fractional affine projection algorithm

	Experimental results
	Time series prediction
	Lorenz time series
	Nonlinear channel equalization
	Atmospheric CO2 concentration forecasting
	Static function approximation

	Conclusion and future work
	Authors’ contributions
	References




