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Background
The recent development of compressive sensing (CS) theory (Candès et al. 2006; Donoho 
2006; Eldar and Kutyniok 2012) has drawn much attention in signal processing commu-
nity over the past few years. The basic principle of CS is that sparse or compressible sig-
nals can be recovered from very few measurements in comparison with traditional data 
acquisitions limited by Shannon–Nyquist sampling theorem. CS has an attractive advan-
tage that the encoder is signal independent and computationally inexpensive at the cost 
of high complexity at the decoder. This is highly desirable to many applications where 
the data acquisition devices must be simple (e.g. inexpensive resource-deprived sensors) 
or long-term sampling process will harm the object being captured (e.g. X-ray imaging) 
(Eldar and Kutyniok 2012).

A signal x = {xn}Nn=1 of length N is said to be sparse in a basis space Ψ  = {ψn}1�n�N if 
transform coefficients �x,ψn�, 1 ≤ n ≤ N  are mostly zero, or nearly sparse in the space 
Ψ  if a dominant portion of these N coefficients are either zero or very close to zero. 
The sparsity of x in Ψ  is quantified by the number of significant (nonzero) coefficients 
K. The signal can be perfectly recovered from M = O(K log(N/K )) observations with 
a high probability. Current CS recovery algorithms explore the prior knowledge that 
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a natural image is sparse in some domains, such as DCT, wavelets, and total variation 
(TV) domain (Becker et al. 2011; Bioucas-Dias and Figueiredo 2007; Candes et al. 2006; 
Li et al. 2009; Rudin et al. 1992). The TV model was first proposed by Rudin et al. (1992) 
for image denoising and has been successfully used for image restoration. Recently, some 
TV solvers have been incorporated in the CS framework (Becker et al. 2011; Bioucas-
Dias and Figueiredo 2007; Li et al. 2009; Lustig et al. 2007). Particularly, TV-based CS 
recovery methods achieve state-of-the-art results (Li et al. 2009). In this paper, we use 
TV-based CS recovery approach, which adopts the finite difference as the sparsifying 
operator.

Given M measurements y = Φx, with Φ producing the random projections, standard 
CS recovers x from y using the following constrained optimization problem:

where p is usually set to be 1 or 0, guaranteeing the sparse solution of the vector Ψ Tx . 
� ∗ �1 is ℓ1 norm, i.e. the summation of the absolute value of all the elements in a vec-
tor. While � ∗ �0 is ℓ0 norm, counting the nonzero entries of a vector. The ℓ1 minimi-
zation problem of (1) can be solved by a linear programming (Candes and Tao 2005). 
Other recovery algorithms have also been recently proposed, including gradient projec-
tion sparse reconstruction (Figueiredo et al. 2007), matching pursuit (Tropp and Gilbert 
2007), and iterative thresholding methods (Daubechies et al. 2004).

The recovery performance of CS depends significantly on the measurements. The 
dominant cost in the sensing (measurement) process is the inner product between the 
sensing matrix and signal, which requires O(MN) operations for the mainstream CS. The 
random projection is not only time consuming but also costs a large number of memory 
particulary for large-scale data sensing. To sense signals under a resource-limited con-
dition, we adopt a random element-wise operator to randomly sample M pixels of an 
image x with N pixels. The sensing strategy of our method, which can be regarded as an 
approximation of the identity operator, saves computer resources drastically. The ran-
dom mask sensing can be useful in constructing 2D or 3D maps for military, environ-
ment, medicine, etc.

A natural property of CS is its ability to compactly encode the signal x without con-
sidering any specific features of x. Hence, an adaptive measurement learning, which 
captures the most important characteristics of a signal, could improve the CS recovery 
performance to a great extent. Some model-based or adaptive recovery algorithms (Wu 
et  al. 2012; Soni and Haupt 2012, 2011) have been proposed, which greatly promoted 
the recovery performance over the traditional signal independent CS. For example, 
the model-guided adaptive recovery of compressive sensing (MARX) (Wu et al. 2012) 
improves the reconstruction quality of existing CS methods by 2–7 dB for some natural 
images. But relevant CS recovery algorithms are time consuming, which takes about 10 
h for a 512× 512 image. The time-consuming recovery process exists in most literature 
works and thus limits their use for large-scale data sensing. Consequently, block-based 
CS (Mun and Fowler 2009) and fast CS framework (Do et  al. 2012) are introduced in 
recent years. The TV-based CS recovery algorithms are edge-reserving algorithms and 
much faster than other algorithms (Bioucas-Dias and Figueiredo 2007; Becker et  al. 
2011; Li et al. 2009; Lustig et al. 2007). Additionally, the structure random matrix (SRM) 

(1)min
x

�Ψ Tx�p s.t. y = Φx
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is highly relevant for large-scale and real-time compressive sensing as it has fast compu-
tation and supports block-based processing (Mun and Fowler 2009; Do et al. 2012). But 
these fast CS methods are not adaptive to signals. An adaptive sampling method (Yang 
et al. 2012) is proposed, but the forepart sampling is fixed. It is well known that edges 
are the critical and dominant information for nature images in computer vision, which 
contain not only the local statistics but also nonlocal ones of the images. In this paper, a 
new framework of adaptive-random sampling and recovery (ASR) algorithm is proposed 
to improve the rate-distortion performance of the image acquisition system, while main-
taining a low complexity of the encoder.

The decoder is essentially the same as the traditional CS recovery algorithm except 
that a low-complexity sensing operator was incorporated (in the decoder). To the best 
of knowledge, this is the first time that edges of recovered images have been exploited in 
the adaptive image recovery, which is also our main contribution. Regarding completely 
random element-wise operation measurements, the measurements are independent and 
all the spatial pixels have the same chance to be measured. However, our adaptive sens-
ing strategy provides the pixels located around edges more chance to be sensed than 
smooth regions of the image.

In the new method, we partially sample m pixels in total as the compressed m meas-
urements. For convenience, we also name our method as compressive (partial) sam-
pling or sensing although it is not the same as standard CS. The proposed framework 
is able to balance computational costs with reconstruction quality. In the new image 
acquisition-coding system, mr(≪ N ) random measurements y = Φr ◦ f  of a 2D image 
f ( f ∈ R

√
N×

√
N) are measured first, where the Φr is a 

√
N ×

√
N  random matrix with 

0/1 entries. The ◦ denotes the inner product operation element-wise. In other words, we 
randomly sense mr image pixels as the measurements. These measurements are quan-
tized and sequentially transmitted to the decoder. Second, we recover a coarse image 
f̂1 from the mr measurements by the traditional TV-based recovery algorithm. The 
edge of f denoted by ma, as the adaptive measurements, is predicted by f̂1. Third, the 
edge measurements are combined with the mr random ones as updated m = mr +ma 
measurements to recover a refined image f̂2. Using the measurement-learning or meas-
urement-updating concept, the double recovery procedure could improve the recon-
struction performance significantly compared to completely M random measurements 
and other state-of-the-art CS methods.

The remainder of this paper is organized as follows. In the next section, we introduce 
the sensing strategy of the new ASR framework: a hybrid adaptive-random sampling is 
elaborated. The subsequent section presents the process of de-quantization by the CS 
decoder to solve a under-determined inverse problem of ASR, followed by which simu-
lation results are reported. The final section concludes this paper.

Hybrid adaptive‑random sensing for ASR
In this section, we introduce the hybrid adaptive-random sampling (HAS) protocol of 
the ASR framework. Figure 1 shows the schematic diagram for the protocol.

Here, we assume the image f(x, y) as a function in 2D Hilbert space L(R)× L(R). The 
new sensing matrix can be constructed by the following four steps:
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Step 1 with random sensing pattern Φr with a 2D uniform distribution U(0, 1)×U(0, 1) 
and binary thresholding. The completely random sampling, which acquires pixels at 
edges and smooth regions uniformly, captures the image profile information and guar-
antees the RIP and incoherence condition.1 We recover a low-quality image fl = f̂1 with 
the completely mr random measurements yr = Φr ◦ f .

Step 2, the low-quality image fl = f̂1 is used to predict the edge information of the high-
quality image f to be recovered. Mathematically, we have

where Γ (f ) = 1 for the edge pixels of f, otherwise Γ (f ) = 0. The fp denotes the predicted 
image from low-quality image fl. The prediction operation I, such as image denoising and 
debluring implantation, maps fl to fp. Here, we simply use the low-quality image fl as the 
predict image fp. The Γ  denotes the edge detection operator that can be implemented 
with the Sobel edge detector (Canny 1986) and binary thresholding. As a result, real 
edges of the high-quality image Γ (f ) can be approximated by the predicted edges Γ (fp).

Step 3 due to possible inaccuracy of the predicted edges, morphology operations can 
be used to generate an adaptive sampling pattern around the edges of f:

where Φ̂a is the adaptive sampling pattern and Mp is the binary morphology operator 
on the edges of the predicted image fp. The morphology operator involves dilation Mp

d 
and closing Mp

c  (dilation followed by erosion). Additionally, Mp
n suggests no morphology 

operation is executed. In practice, with the help of edges, we need not to resample the 
measurements that have been sampled in the first completely random sensing in Step 1. 
Before the adaptive sampling, we remove the random sensing measurements located at 
edges:

where Φa is the practical adaptive sampling (we also said as adaptive sampling), \ is the 
complement operation and Φ̂a \ (Φr ∩ Φ̂a) is the complement of (Φr ∩ Φ̂a) in Φ̂a. Then 
the adaptive measurements is ya = Φa ◦ f .

1  In 2013, Needell and Ward adopted the bivariate Haar transform to state and prove: Consider n,m, s ∈ N, and let 
N = 2n. There is an absolute constant C > 0 such that if A:CN×N → Cm is such that, composed with the inverse bivari-
ate Haar transform, AH

−1:CN×N → Cm has the restricted isometry property of order Cs log3(N) and level δ < 1/3. 
When A is an identity operator and H is the orthogonal bivariate Haar transform, the measurements A will satisfy the 
RIP. Considering the proposed sensing strategy, which can be regarded as an approximation of the identity operator, 
could satisfy the RIP.

(2)Γ (f ) ≈ Γ (fp) = Γ (I(fl))

(3)Φ̂a = Mp(Γ (fp))

(4)Φa = Φ̂a \ (Φr ∩ Φ̂a)

Fig. 1  The schematic diagram for the ASR framework
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After understanding the function of image edges in computer vision and image pro-
cessing, we suppose that the image pixels that located at edges or near the edges are 
more important than those located at smooth regions. Consequently, involving the 
adaptive sampling pattern into the sensing procedure is highly reasonable.

Step 4 we mix the random and adaptive sampling patterns via a union operation to get 
the new hybrid adaptive-random sampling pattern (sensing matrix with 0/1 elements).

where Φr is the random sampling pattern and Φa is the adaptive sampling pattern corre-
sponding to the edge of fl. In practice, we directly use the completete random measure-
ments (in Step 1) and the adaptive measurements as our new hybrid adaptive-random 
measurements.

where yr is the completely random measurement and ya is the adaptive measurement 
corresponding to the edge of fp.

In other words, we reuse (do not resample) the random measurements of Φr obtained 
at the Step 1 for saving the measurements, as well as the previous predicted edges of the 
recovered image at the Step 1 are also reused for the second iteration recover which will 
refine the recovered image.

To physically acquire the pixels corresponding to the HAS matrix Φm, we may use 
integrated circuits to control reset transistors (or switches) in complementary metal-
oxide-semiconductor (CMOS) camera. As a result, only a portion of photodetectors and 
amplifiers (with respect to Φr first and then Φa) is turned on. Compared to traditional 
image acquisitions, the HAS saves electrical power and extends lifetime of image sen-
sors. More importantly, the HAS can be generalized to other data acquisitions where the 
most important information of object is adaptively extracted via a low-cost and online 
sampling and recovery in advance.

For convenience, the sensing ratio (or sampling ratio) of the HAS matrix η1 is defined 
as the number of nonzero elements of Φm over the dimension of Φm (i.e. image size of f). 
The adaptive sampling ratio η2 is defined as the number of nonzero elements of Φa over 
that of Φm.

The sensing ratio η1 could be considerably smaller and thus measurement cost can be 
reduced. In addition, the adaptive sampling ratio η2 cannot be too large to satisfy the RIP 
and incoherence condition.

Recovery algorithm with TV regularizer
After using the HAS matrix to directly acquire a compressed image representation, the 
recovery algorithm plays a key role to reconstruct a high-quality image. In this section, 
we discussed the TV regularizer (Becker et al. 2011; Bioucas-Dias and Figueiredo 2007; 

(5)Φm = Φr ∪Φa

(6)ym = yr ∪ ya

(7)η1 =
∑

i,j Φm(i, j)

Dim(Φm)
, η2 =

∑

i,j Φa(i, j)
∑

i,j Φm(i, j)
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Li et al. 2009; Lustig et al. 2007; Rudin et al. 1992), which combined with the HAS strat-
egy, used in our ASR framework.

For reconstructing the high-quality image f from the measurements (compressed 
image representation) g, the Lagrangian regularization problem should be solved, i.e.

where Φm is the HAS operator, α and β are Lagrangian multipliers. The second term is 
the TV regularizer; the third term relates to ℓ1-minimization with a sparsifying trans-
form operator T. According to the variational principle, we have

where O(f) is the objective functional given in (8); φ∗
m and T ∗ are adjoint operators of 

φm and T, respectively. In this work, we set β to zero for fast and simple reconstruction. 
With the help of nonlinear conjugate gradient method (Hager and Zhang 2006; Rudin 
et al. 1992) and (9), the problem (8) can be solved.

Empirical results and remarks
In this section, numerical performances of the proposed ASR approach will be evalu-
ated. Without loss of generality, we assume Dim(Sm) = Dim(f ) = 256× 256. The sens-
ing ratio η1 and adaptive sampling ratio η2 defined in (7) can be tunable with modifying 
binary thresholds in Steps 1 and 3 of “Hybrid adaptive-random sensing for ASR” sec-
tion. For simple notations, Mn, Md and Mc correspond to the edges of f with null mor-
phology operation, dilation and closing (Step 3 of “Hybrid adaptive-random sensing 
for ASR” section). Similarly, Mp

n, Mp
d and Mp

c  correspond to the edges of fp (Step 2 of 
“Hybrid adaptive-random sensing for ASR” section). Moreover, we use abbreviations of 
Φr and Φm to denote sensing methods using the completely random matrix and HAS 
matrix, respectively (Step 4 of “Hybrid adaptive-random sensing for ASR” section). For 
Φm +Mn and Φm +M

p
n the adaptive sensing ratio η2 is set to 0.2. For Φm +M

p
d,c and 

Φm +Md,c the parameter η2 is set to 0.45.
We will demonstrate that the incorporation of edge information in the sensing pro-

cedure can pronouncedly improve the recovery performance. In the beginning, the 
HAS performance for different edge extraction methods are investigated. Then, we 
compare recovery performance of the HAS with the completely random sensing and 
other CS recovery methods. Finally, we will discuss the influence of η2 on the recovery 
performance.

(8)

min
f

��

�

g −Φm ◦ f
�2
dxdy +α

�

�

�

df

dx

�2

+
�

df

dy

�2

dxdy+ β

� �

�

Tf
�2
dxdy







(9)

δO(f )

δf
= 2Φ∗

m ◦
�

g −Φm ◦ f
�

− α
d

dx





df /dx
�

(df /dx)2 + (df /dy)2





− α
d

dy





df /dy
�

(df /dx)2 + (df /dy)2



+ βT ∗





Tf
�

�

Tf
�2




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For fair comparison, m measurements are used to recover the image for all methods. 
In our HAR model m = mr +ma measurements are used for recovering the high-quality 
image. First, the low-quality image fl is generated by the low sensing ratio mr measure-
ments. The edges of f and fp can be extracted by the Sobel method (Step 2 of “Hybrid 
adaptive-random sensing for ASR” section).

To highlight the importance of edge for recovery method and verify the efficacy of 
ASR in this regard, we adopt two type edges, Γ (f ) and Γ (fp), respectively, to conduct a 
comparative study between ASR and completely random sensing. A general set of test 
images, e.g., Lena, Boat, Cameraman, Fruits, House and Peppers commonly found in the 
literatures, was used in our comparative study.

Using the images, Fig. 2 shows the peak signal-to-noise ratio (PSNR) as a function of 
the sensing ratio η1. We observe: (1) the convergence of all the methods are comparable; 

Fig. 2  PSNR ( In decibels) results for ASR with different edges and completely random sensing
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(2) the performance of Φm sensing is much better than that of Φr; (3) the best PSNR 
is achieved by the Φm sensing involving the dilated edge information. This also sug-
gests the pixels around edges contain very important information of image. Figure  3 
shows the sensing performance of the Lena. After comparing Fig. 3b–d with Fig. 3f–h, 
Φm +Md,c shows better recovery results than Φm +M

p
d,c, while Φm +M

p
n is compara-

ble to Φm +Mn. However, the HAS matrix incorporating predicted edges by Φm +M
p
d,c 

especially Φm +M
p
d operations still achieve higher PSNR values (such as 30.14 dB with 

the sensing ratio η1 = 35%) in contrast to completely random sensing matrix (27.22 dB 
with the same η1 = 35%).

We also compare our method ASR (Φm +M
p
d) with state-of-the-art methods: MARX 

by Wu et al. (2012), TVAL3 by Li et al. (2009), SRM (WPFFT) by Do et al. (2012) and 
BCS (SPL-DDWT) by Mun and Fowler (2009). Figure 5 shows the PSNR performance 
for different CS recovery methods and ours. Although the performance of MARX is 
the best over all other methods, ASR is obviously better than TVAL3, SPM and BCS. 
However, the MARX takes very long run time: around 10 h for 512× 512 image tested 
on MatLab 7.1, which is not fit for large-scale signal processing. For the same-sized 
image and sensing rate, our method only need ten seconds. In Table 1, we list the CPU 
time of these methods for 256× 256 test gray images with the sensing rate η1 = 35%.  
All the methods are tested on a PC with 3.30 GHz Intel i3 CPU and 8G RAM. We 
can see that the methods except for MARX take only several or fifteens seconds while 
MARX takes about 80 minutes at the same situation. Figure 4 shows the visual quality of 

Fig. 3  The original Lena image (a) and reconstructed versions with sensing ratios (η1) of 35% for the sensings, 
(b) Φm +Mc; (c) Φm +Md; (d) Φm +Mn; (e) Φr; (f) Φm +M

p
c ; (g) Φm +M

p
d; (h) Φm +M

p
n
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these methods for some test images with the sensing rate η1 = 40%. We can see that our 
method is comparable to or better than other methods both in PSNR value and visual 
quality.

In Figs. 2, 3, 4, 5 and Table 1, we use the same parameter η2, which is not the opti-
mal value for each image. We can get better performance using the optimal adaptive 
sensing ratio η2. But too much edge information in the HAS matrix will destroy the RIP 
and incoherence condition of the CS framework. This situation appears at extremely 
high adaptive sampling ratios η2, where the HAS breaks down. We evaluate the opti-
mum value of η2 for test images with η1 = 40% as illustrated in Fig. 6. Using morphology 
operations, better reconstruction results are achieved by the HAS even if the num-
ber of adaptive sampling is comparable to that of random sampling (with η1 = 40% , 

Fig. 4  Recovered Lena, House and Boat images with sensing ratio 40%. From left to right in each row they 
correspond to ASR, BCS, MARX, TVAL3 and SRM, respectively

Table 1  The computing times (seconds) for 256× 256 images with sensing rate 35%

Images MARX ASR TVAL3 SRM BCS

Lena 97× 60 8.66 1.68 0.53 15.62

Boat 77× 60 6.76 1.75 0.64 14.25

House 87× 60 6.97 1.49 0.53 16.35



Page 10 of 12Yang et al. Appl Inform  (2016) 3:12 

the optimum ηopt2 ≈ 45%± 5% for Φm +M
p
d,c). However, with η1 = 40%, the optimum 

η
opt
2 ≈ 15%± 5% for Φm +M

p
n in our numerous experiments. It demonstrates that the 

image pixels that located “around” the edges will contain more important information 
than the pixels that located “exactly at” the edges without dilation operation. Therefore, 
for image sensing, to select pixels around the edges together with some randomly picked 
pixels will achieve much better recovery performance.

Fig. 5  PSNR performance versus sampling rate of our method ASR (Φm +M
p
d ) and other CS recovery meth-

ods
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Conclusions
A novel ASR protocol is proposed to acquire a compressed image representation in 
space domain. Incorporating adaptive edge information that can be extracted from 
a lower random sampling, the ASR measurements show much better reconstruction 
results in comparison with the completely random measurements and some state-of-
the-art CS methods. The RIP and incoherence condition of the ASR sensing matrix can 
be satisfied by balancing the number of adaptive sampling with that of completely ran-
dom sampling. The hybrid sensing concept opens up a bright and unexplored way for 
low-cost data acquisition.

Fig. 6  Evaluating the optimum η2 for Φm +M
p

c,d The sensing ratio is η1 = 40% for both Φr and Φm +M
p
c,d.  

The left column: the PSNR versus η2 for test images, respectively, and the right column: the SSIM versus η2 , 
respectively
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