
A modified approach for solving a fuzzy 
multi‑objective programming problem
Ahmed M. K. Tarabia1, Mohamed A. E. Kassem2 and Noha M. El‑Badry1*

Background
In fuzzy mathematical programming models, all or some of the parameters can be 
defined as fuzzy numbers. For the models in which all the parameters are defined as 
fuzzy numbers, there is one important point; how the optimal value of the objective 
function will be found. Jiménez et al. (2000, 2007) said that the answer is related to the 
ranking of fuzzy numbers. Fuzzy ranking procedure can be used as a part of the solu-
tion mechanism for solving fuzzy mathematical programs in which the coefficients of 
the objective function, coefficients of the constraints and right-hand values of the con-
straints are defined as fuzzy numbers. Although there are several studies on solving 
fuzzy mathematical programming problems by employing fuzzy ranking methods, gen-
erally, the fuzzy mathematical programming problems are first transformed into classi-
cal mathematical programs then solved using conventional techniques in the literature 
(Rommelfanger 1996).

In general, the nonlinear programming problem to find a solution, which minimizes 
the objective function under given constraints, one whose objective function and con-
straints region are convex, is called convex programming problem. For such convex pro-
gramming problems, there have been proposed many efficient solution methods as the 
successive quadratic programming method and the general gradient method. Unfortu-
nately, there have not been proposed any decisive solution method for nonconvex pro-
gramming problems. In recent years, with the diversification of social requirements, the 
demand for the programs with multiple objective functions, which may be conflicting 
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with each other, rather than a single-objective function, has been increasing (e.g. maxi-
mizing the total profit and minimizing the amount of pollution in a production plan-
ning). Since there do not always exist a completely optimal solution which optimizes 
all objectives simultaneously for multi-objective programming problems, the Pareto 
optimal solution or non-inferior solution is defined. A solution is Pareto optimal if any 
improvement of one objective function can be achieved only at the expense of at least 
one of the other objective functions. For such multi-objective optimization problems, 
fuzzy programming approaches (e.g. Zimmermann 1983; Rommelfanger 1996), consid-
ering the imprecise nature of the DM’s judgments in multi-objective optimization prob-
lems, seem to be very applicable and promising. The application of the fuzzy set theory 
at the multi-objective linear programming problems was considered firstly by Dubois 
and Prade (1980). They stipulating that ‘‘When the complexity of system increases, our 
ability to formulate precise and yet meaningful statement on this system decreases up to 
a threshold beyond which precision and significance become mutually exclusive charac-
teristics’’ is also instructive in this regard. This gives substance to the study of mathemat-
ical models under uncertainty. As probability theory is a matured segment and a familiar 
territory of mathematics, it is not a surprise that early works on mathematical program-
ming under uncertainty were devoted to situations where randomness is in the state of 
affairs (Adeyefa and Luhandjula 2011; Kampempe and Luhandjula 2012; Kall 1976; Vajda 
1972). Nevertheless, imprecision cannot be equated with randomness. As a matter of 
fact, there is a qualitatively different type of imprecision (vagueness) which cannot be 
tackled with probabilistic apparatus (Zadeh 1978). This has rightly led some research-
ers to embark upon the investigation of ways of integrating fuzzy relations and/or fuzzy 
quantities into mathematical programming models (Zimmermann  1987; Inuiguchi and 
Ramik 2000; Luhandjula 2007).

Our motivation here is to modify an approach that gives a good reflection in real-
ity as well as yields a computationally tractable deterministic problem. Here, a multi-
objective programming problem with fuzzy objective functions is considered, which is 
an ill-defined problem. Neither solution concepts (like Pareto optimality) nor existing 
approaches (like the weighting method) are introduced for deterministic multi-objec-
tive programming and can be blindly applied. On applying the ranking fuzzy numbers 
tool, it should be properly tailored to take into consideration the fuzziness surround-
ing the problem. Moreover, existing approaches for solving the above-mentioned prob-
lem either caricature the reality or are computationally demanding. The remaining of 
the paper is as follows. In “Preliminaries” section, we give the brief primer notions of 
ranking function and fuzzy numbers, and discuss the algorithm for giving fuzzy num-
bers. In “Finding a satisfying solution of a multi-objective program with fuzzy objective 
functions” and “Algorithm for satisficing solution of problem” sections, our approach for 
dealing with a multi-objective programming problem with fuzzy number coefficients is 
presented. In “The stability set of the first kind” section, we determine the stability set of 
the first kind. “An illustrated example” section is devoted to a numerical example for the 
sake of illustration. We end up in “Conclusion” section with some concluding remarks 
along with perspectives for further research in this field.
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Preliminaries
Fuzzy numbers

Ranking of fuzzy numbers through the comparison of their expected intervals

A fuzzy subset Ã of the real line R with membership function µÃ : R → [0, 1] is called a 
fuzzy number if:

(i) Ã is normal, i.e., there is x0 ∈ R such that µÃ(x0) = 1.
(ii) Ã is fuzzy convex that is:

for x1, x2 ∈ R, � ∈ [0, 1].

Jiménez (1996) has proposed a ranking method of fuzzy numbers based on the com-
parison of their expected intervals. This method is employed in this paper for developing 
a direct solution approach for the given multi-objective with fuzzy parameters.

The membership function of a fuzzy number Ã = (a
−
; a1; a2; ā) can be written as

To the existence, given the inverse functions f −1
A (x) and g−1

A (x), it is assumed that fA(x) 
is continuous and increasing and gA(x) is continuous and decreasing.

The expected interval of a fuzzy number is defined as follows (Jiménez 1996):

Integrating by making change in the variable α to α = fA(x), and α = gA(x) in the first 
and second integrations, respectively:

If fA and gA are linear, that is if the fuzzy number Ã is triangular or trapezoidal, its 
expected interval will be as in (4) (Jiménez 1996). If the fuzzy number Ã is triangular, 
then a1 = a2 = a and can be written as Ã = (a

−
, a, ā).

If there are two fuzzy numbers Ã and B̃, the expected interval of Ã− B̃ is

µÃ(�x1 + (1− �)x2) ≥ min
(

µÃ(x1),µÃ(x2)
)

(1)µÃ(x) =























0, ∀x ∈ (−∞, a
−
],

fA(x), ∀x ∈ [a
−
, a1],

1, ∀x ∈ [a1, a2],
gA(x), ∀x ∈ [a2, ā],
0, ∀x ∈ [ā,∞).

(2)EI
(

Ã
)

=
[

EÃ
1 ,E

Ã
2

]

=

[

∫ a1

�a
x dfA(x),−

∫ ā

a2

x dgA(x)

]

.

(3)EI
(

Ã
)

=
[

EÃ
1 ,E

Ã
2

]

=

[

∫ 1

0
f −1
A (α) dα,−

∫ 1

0
g−1
A (α) dα

]

.

(4)EI
(

Ã
)

=

[

1

2

(

a
−
+ a1

)

,
1

2
(a2 + ā)

]

(5)EI
(

Ã− B̃
)

=
[

EÃ
1 − EB̃

2 ,E
Ã
2 − EB̃

1

]

= EI
(

Ã
)

− EI
(

B̃
)

.
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According to the ranking method of Jimenez, for any pair of fuzzy numbers Ã and B̃, 
the degree in which Ã is bigger than B̃ is defined as (Jiménez 1996)

where µ(Ã, B̃) is the degree of preference of Ã over B̃. When µ(Ã, B̃) = 0.5 it will be said 
that Ã and B̃ are equal.

The expected value of a fuzzy number is the half point of its expected interval:

If the fuzzy number Ã is triangular or trapezoidal, its expected value will be (Jiménez 
1996)

Proposition 1 Luhandjula and Rangoaga (2014)

Define

and

then

Algorithm for finding a rank of a fuzzy number
Algorithm 1 

Step 0:  Start
Step 1:  Read µÃ(x)

Step 2:  Define f
−
(α) = ã

−
α
, f̄ (α) = ¯̃aα ,

Step 3:  Find Cd

(

Ã
)

=
[

1
2

(

a
−
+ a1

)

, 12 (a2 + ā)
]

.

Step 4:  Print Cd

(

Ã
)

Step 5:  Stop

(6)µ

�

Ã, B̃
�

=



















0 if EÃ
2 − EB̃

1 < 0,
EÃ
2 −EB̃

1

EÃ
2 −EB̃

1−
�

EÃ
1 −EB̃

2

� , if 0 ∈
�

EÃ
1 − EB̃

2 ,E
Ã
2 − EB̃

1

�

,

1 if EÃ
1 − EB̃

2 > 0.

(7)EV (Ã) =
EÃ
1 + EÃ

2

2
.

(8)EV
(

Ã
)

=
1

4
(a
−
+ a1 + a2 + ā).

f
−
: [0, 1] → R

α → f
−
(α) = ã

−
α

f̄ : [0, 1] → R

α → f̄ (α) = ¯̃aα

Cd

(

Ã
)

=

[

1

2

(

a
−
+ a1

)

,
1

2
(a2 + ā)

]

.
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Finding a satisfying solution of a multi‑objective program with fuzzy objective 
functions
Problem formulation

We consider a mathematical program of the form:

where f̃i(x), i = (1, 2, . . . ,m) are a function from Rn to F
(

f (Rn)
)

 and gj (j = 1, …, k) are a 
function from Rn to R, where F

(

f (Rn)
)

 is the image of objective function.
This model comes up in several applications including water resource management 

(Bravo and Gonzalez 2009), production planning problem (Escudero et  al. 2009) and 
power plant maintenance scheduling (Canto 2008).

It is not a loss of generality to focus on the case of deterministic constants. As a matter 
of fact, the literature is rich of papers addressing the problem of converting fuzzy con-
straints into crisp ones. See for example Luhandjula (1989) and Bhaskar et al. (2004). The 
problem (9) is an ill-stated problem due to the presence of several objective functions 
coupled to fuzziness surrounding involved data.

Therefore, the optimum does not exist for this problem and we have to seek for some 
satisfying solution. Moreover, existing approaches for the deterministic case, like the 
weighting method, cannot be applied blindly. They should be tailored to make them suit-
able for the fuzzy case.

Let us define the following scalarization for fuzzy multi-objective nonlinear program-
ming (FMONLP) problem, using the membership ranking function and a modified crisp 
model

subject to

where ρ, f
−i
= min f̃i(x), f̄i = max f̃i(x), i = 1, 2, . . . ,m. is a sufficiently small positive 

scalar
The problem (10) can be reformulated to take the following equivalent form (Kassem 

2008).

subject to

(9)
Min

(

f̃1(x), f̃2(x), . . . , f̃m(x)
)

subject to x ∈ X = {x ∈ R
n|gj(x) ≤ 0, j = 1, 2, . . . , k}

Min Max ρ
�

Ãl
jxj +







m
�

i=1

f̃i(x)

f
−i
− f̄i







(10)x ∈ X = {x ∈ R
n|gj(x) ≤ 0}, ℓ = 1, 2, . . . , q,

� ≥ 0, xj ≥ 0, i = 1, . . . ,m, j = 1, 2, . . . , k .

Min �

(11)
ρ
�

Ãl
jxj +







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
≥ �, i = 1, 2, . . . ,m
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where � = Max ρ
∑

Ãl
jxj +

(

m
∑

i=1

f̃i(x)

f
−i
−f̄i

)

, i = 1, . . . ,m.

Moreover, it has not inconvenienced of defuzzification operators that transform a 
fuzzy number into the real number, leading to a loss of too much information about 
fuzzy numbers. Furthermore, the ranking number operator is optimal in the sense that it 
is among of a fuzzy member, that minimizes the fuzzy number.

The stability set of the first kind
Definition 4.1. Stability Generally, we call the numerical method is stable if the 
numerical errors which are generated during the solution of discretized equations 
should not be magnified, i.e., the numerical solution is close to the analytical solution. 
Here, the stability set of the first kind means that the set of all parameters say (ρ, λ) 
which ensures a solution (x̄, �̄) of FMONLP problem is optimal.

In general, a numerical method is stable if the cumulative effect of all errors, including 
round-off errors, is bounded independent of the mesh points, i.e., the numerical solution 
is close to the analytical solution. Here, we consider a stability set of the first kind which 
means that the set of all parameters that ensures a numerical solution of FMONLP prob-
lem is optimal.

Definition 4.2 Given a certain (ρ, λ) with a corresponding optimal solution 
(

x̄, �̄
)

; then 
the stability set of the first kind of the problem (9) corresponding to this optimal solu-
tion is defined by:

S
(

x̄, �̄
)

=
{

(ρ, �) ∈ Rm+1 :
(

x̄, �̄
)

 is an optimal solution of FMONLP problem}.

On account of Rockafellar (1967), we can consider the problem (9) is stable of the first 
kind and hence problem (10) is also stable.

From the stability of the first kind of the problem (10), there exists 
ρ, �, Ã ≥ 0, u ∈ Rm, u ≥ 0, and ν ∊ Rr, ν ≥ 0 such that the Kuhn–Tucker conditions of 
problem (10) take the form:

x ∈ X = {x ∈ R
n|gj(x) ≤ 0}, ℓ = 1, 2, . . . , q,

� ≥ 0, xj ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , k .

(12)

m
∑

i=1

ui
∂fi

∂xα
+ ρ

m
∑

i=1

uiÃ
α
i

∂fi

∂xα
+

∑

j∈J

νj
∂gj

∂xα
= 0, α = 1, 2, . . . , n,

(13)

m
∑

i=1

ui = 1,

(14)
�− ρ

m
�

i=1

Ãα
i

∂fi

∂xα
+







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
≤ 0, i = 1, 2, . . . ,m,
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The determination of the stability set of the first kind S
(

x̄, �̄
)

 depends only on whether 
any of the variables ui, i = 1, 2, …, m, and any of the variables νj = 0, j ∊ J ⊂ {1, 2, …, r} 
which solve Eqs. (12), (13), and (17), then in order that the other Kuhn–Tucker condi-
tions (14) and (16) are satisfied, we must have

Let
D = {I|ui = 0; i ∊ I, ui > 0, i ∉ I solve (12), (13), (17–20)}
and

Then, it is clear that

(15)νjgj(x̄) = 0, j ∈ J ⊂ {1, 2, . . . , r},

(16)ui











�− ρ

m
�

i=1

Ãα
i xi +







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i











≤ 0, i = 1, 2, . . . ,m,

(17)ui ≥ 0, i = 1, 2, . . . ,m,

(18)νj ≥ 0, j ∈ J ,

(19)νj = 0, j /∈ J .

(20)�i = ρ

m
�

i=1

Ãα
i

∂fi

∂xα
+







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
, i /∈ I;

�i ≤ ρ

m
�

i=1

Ãα
i

∂fi

∂xα
+







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
, i ∈ I .

S
�

x̄, �̄
�

=











(ρ, �) ∈ Rm+1|�i = ρ

m
�

i=1

Ãα
i xi +







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
, i /∈ I ,

and

�i ≤ ρ

m
�

i=1

Ãα
i xi +







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
, i ∈ I











.

S
(

x̄, �̄
)

=
⋃

I∈D

SI

(

x̄, �̄
)
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Algorithm for satisficing solution of problem (9)
From the discussion, we can derive the following algorithm for finding a satisficing solu-
tion of problem (9)

Algorithm 2 
Step 0: Input m, k

Input objective function: f̃1(x), f̃2(x), . . . , f̃m(x)
Input constraint function: g1(x), …, gj(x).
Step 1: Finding fuzzy number of f̃1(x), f̃2(x), . . . , f̃m(x).

(a)  Put l = 1
(b)  Repeat until break

If l ≤ m go to Algorithm 1 with input f̃l(x). Find f−l(x) and f̄l(x). Else, break and go to 
(c).

Step 2: Finding a satisfying solution of problem (9) by solving problem (21)

subject to

If problem (21) has solution x*, then go to (d)

(c) If such problem (21) cannot be found go to (f )

Print “x* is a satisficing solution of problem (9)”.

(d) Determine the stability set of the first kind, S
(

x̄, �̄
)

, corresponding to this solution.
(e) Print: “There is no satisficing solution of problem (9)”.
(f ) Stop.

An illustrated example
In this section, some calculations are carried out to illustrate the efficiency of the pro-
posed method. Here, we consider only one of these examples for brevity:

Consider the following multi-objective program:

Min �

(21)ρ
�

Ãl
jxj +







m
�

i=1

f̃i(x)

f
−i
− f̄i






f
−i
≥ �, i = 1, 2, . . . ,m

x ∈ X = {x ∈ R
n|gj(x) ≤ 0}, ℓ = 1, 2, . . . , q,

� ≥ 0, xj ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , k .

(22)

min Ã1
1x1 + Ã1

2x2, Ã
2
1x1 + Ã2

2x2

subject to x1 + x2 ≥ 6,

2x1 + x2 ≥ 9,
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where Ãℓ
j ,
(

ℓ = 1, 2; j = 1, 2
)

 are fuzzy numbers the membership function of which are 
given below:

Using Algorithm 1, we obtain the fuzzy numbers as follows:

Using Algorithm 1 given by Luhandjula and Rangoaga (2014),

µÃ1
1
(x) =







2x − 1 for x ∈ [0.5, 1]
−2x + 3 for x ∈ [1, 1.5]
0 otherwise

µÃ1
2
(x) =







5x − 9 for x ∈ [1.8, 2]
−x + 3 for x ∈ [2, 3]
0 otherwise

µÃ2
1
(x) =







1
2x − 1 for x ∈ [0, 2]
−x + 3 for x ∈ [2, 3]
0 otherwise

µÃ2
2
(x) =







x for x ∈ [0, 1]

− 1
2x +

3
2 for x ∈ [1, 3]

0 otherwise
.

Cd

[

Ã1
1

]

=

[

1

2
(0.5+ 1),

1

2
(1+ 1.5)

]

= [0.75, 1.25]

Cd

[

Ã1
2

]

=

[

1

2
(1.8+ 2),

1

2
(2+ 3)

]

= [1.9, 2.5]

Cd

[

Ã2
1

]

=

[

1

2
(0+ 2),

1

2
(2+ 3)

]

= [1, 2.5]

Cd

[

Ã2
2

]

=

[

1

2
(0+ 1),

1

2
(1+ 3)

]

= [0.5, 2].

Cd

[

Ã1
1

]

=

[

1

2

∫ 1

0
(α + 1)dα,

1

2

∫ 1

0
(3− α)dα

]

= [0.75, 1.25]

Cd

[

Ã1
2

]

=

[

1

5

∫ 1

0
(α + 9)dα,

∫ 1

0
(3− α)dα

]

= [1.9, 2.5]

Cd

[

Ã2
1

]

=

[

∫ 1

0
2αdα,

∫ 1

0
(3− α)dα

]

= [1, 2.5]

Cd

[

Ã2
2

]

=

[

∫ 1

0
αdα,

∫ 1

0
(3− 2α)dα

]

= [0.5, 2].
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Obtaining the system using Algorithm 2, we have

subject to

The solution of the system (23) is x* = (3, 3), and the corresponding stability set of the 
first kind is

On the other hand, using Algorithm 2 given by Luhandjula and Rangoaga (2014), we 
get the system

The solution of the system (23) is x* = (3, 3).

Conclusion
Some numerical calculations have been carried out on different examples and the CPU 
time taken by the proposed method and Luhandjula and Rangoaga (2014) method 
is compared. The results show that proposed method has less CPU time around 75% 
than Luhandjula and Rangoaga (2014) method. Moreover, the proposed method which 
depends on ranking of fuzzy numbers shows that it is much easier and efficient than 
the method mentioned in Luhandjula and Rangoaga (2014); while in the last method, it 
depends on obtaining nearest interval approximation and computing some integrations.

An approach that strikes a balance between effectiveness and efficiency while cop-
ing with multi-objective programming problems with fuzzy objective functions is 

Min �

(23)0.75x1 + 1.9x2 +

(

0.75x1 + 1.9x2

12
+

x1 + 0.5x2

18

)

� ≥ 4.5

1.25x1 + 2.5x2 +

(

1.25x1 + 2.5x2

12
+

2.5x1 + 2x2

18

)

� ≥ 13.5

x1 + 0.5x2 +

(

0.75x1 + 1.9x2

12
+

x1 + 0.5x2

18

)

� ≥ 4.5

2.5x1 + 2x2 +

(

1.25x1 + 2.5x2

12
+

2.5x1 + 2x2

18

)

� ≥ 13.5

x1 + x2 ≥ 6

2x1 + x2 ≥ 9

S(x̄, �̄) = {(6.9�2 − 7.5�1)ρ = 0.49, 0.484 ≥ (6.9�1 + 7.5�2)ρ}.

(24)

�1

[(

0.75

1.9

)

+

(

1.25

2.5

)]

+ �2

(

1

0.5

)

+

(

2.5

2

)

+ µ1

(

−1

−2

)

+ µ2 = 0,

µ1(−x1 − x2 + 6) = 0,

µ2(−2x1 − x2 + 9) = 0,

�1 > 0, �2 > 0,µ1 ≥ 0, µ2 ≥ 0.
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introduced. Algorithms are given in a way to make the transition from theory to practice 
easy and can be also carried out.

Indeed, the considered approach is to extend the approaches described in Joubert and 
Luhandjula (2010) and Skawa and Yauchi (1999), where randomness and fuzziness are 
under one roof in an optimization framework.

Finally, for further research, analysis of fuzzy multi-objective programming method 
can be successfully applied to serve the decision makers and to push forward a decision 
support system (DSS) (Eom and Kim 2006).
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