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Introduction
Complex systems are usually illustrated by networks which capture the topology of the 
interactions between the entities (Strogatz 2001; Newman 2010; Wasserman and Faust 
1994; Girvan and Newman 2002; Lambiotte et  al. 2014; Zhang et  al. 2015, 2016). For 
systems with more complicated entity interconnections, edges with different attributes, 
e.g., directed graphs (Newman 2010; Bang-Jensen and Gutin 2008), weighted graphs 
(Newman 2004; Barrat et al. 2004), signed graphs (Doreian and Mrvar 2009; Yang et al. 
2007) and so on, have been thoroughly studied. In recent years, systems with entity 
interactions that have various types or can change over time have attracted an increas-
ing research attention (Verbrugge 1979; Szell et al. 2010; Rocklin and Pinar 2013; Holme 
and Saramäki 2012). For example, a person interacts with his friends in Facebook and 
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uses emails for business will demonstrate different behaviors in Facebook social network 
and email social network. Such networks are usually interpreted as a combination of dif-
ferent “layers” (or “views,” “edge colors,” “relations,” “slices,” etc., in the literature), and 
is regarded as multilayer networks. In different contexts, “multigraph,” “multiplex net-
work,” “multirelational network,” “multislice network,” “multilevel network,” “network 
of network,” and “temporal network” always refer to a similar network structure (Kivelä 
et al. 2014). Following the conventional terminology in network science, we refer to net-
works with such structure as multilayer networks.

Although there is actually no consensus on its definition, a community usually refers to 
a group of nodes that are compactly connected with each other and sparsely connected 
with those nodes outside the group. By partitioning a network into communities, we 
obtain its community structure, which is a coarse-grained representation of the network 
that assists us analyzing the roles played by each node (Fortunato 2010). Despite numer-
ous studies on multilayer networks in recent years, there is still a lack of evaluation met-
rics for measuring the community structure of a multilayer network, which in turn limits 
the number of available algorithms to find the optimal community structure in multilayer 
networks. Existing evaluation metrics in multilayer networks are mainly derived from 
“single-layer” cases, where the evaluation metrics are designed to detect modular struc-
tures in conventional networks that can be represented simply with nodes and edges, e.g., 
edge centrality, clustering coefficient, and metrics based on dynamic process (Battiston 
et  al. 2013; Bródka et  al. 2010; De  Domenico et  al. 2013; Lambiotte and Rosvall 2012; 
Kivelä et al. 2014; De Domenico and Lancichinetti 2015). In such methods, detections are 
applied independently on each layers before final assignment, or on a “collapsed network” 
which is a single-layer network generated by aggregating the layers (Peixoto 2015). Such 
treatment is intuitive to find an “average” role played by a node in different layers, but 
somehow fails to treat the multiple layers fundamentally as a whole. Mucha et al. 2010, 
proposed a modularity-based metric for multilayer network community structure derived 
from a Laplacian dynamic. To the best of our knowledge, they for the first time intro-
duce couplings to the multilayer network models, which are links that appear between 
layers and connect a node with its copy in other layers, to combine the layers and form an 
interconnected-layer network model. Based on such an interconnected-layer structure, 
the generalized modularity is able to evaluate the community structure without any com-
pression or loss of the information encoded in the multilayer networks.

In spite of the great advances, the generalized modularity still has weaknesses which 
will lead to confusion especially when it comes to temporal networks, where the lay-
ers are usually time slices of a specific evolving single-layer network. The derivation of 
modularity is based on the stability of global communities (Lambiotte et al. 2008), which 
is measured by comparing the position of a random walker with the stable state. This 
assumes that the random walker keeps transferring as the time goes. However, the layers 
are interdependent w.r.t. time and the couplings are introduced to describe the continu-
ity of the interaction between nodes along the layers (time slices) (Mucha et al. 2010). 
It is confusing since one layer may be the result of the evolvement of another layer but 
the random walker is assumed to be able to travel between them. Another important 
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weakness is, although the generalized modularity is generally similar with its original 
version in the single-layer case, the definition of a community in multilayer networks 
becomes vaguer to understand—what does a community look like in multilayer net-
works if a random walker can hardly escape from it? Actually, the current derivation 
of multilayer modularity focuses on capturing the dynamic property of a community—
stopping the random walker from leaving it. In some cases where there is such random 
process defined on the network, the definition of the community is apparent. But in 
other cases, the definition of a community becomes vague.

The above two issues are inevitably brought by the derivation from a dynamic perspec-
tive. In order to address them, in this paper, we derive the generalized modularity from 
a static perspective, i.e., without defining dynamic process on the network. As will be 
shown in “Multilayer modularity from a static perspective,” from such perspective, the 
generalized modularity is represented as the predominant part of Hamiltonian, which 
measures the total energy of the systems in a variety of cases including community 
structure in the networks (Reichardt and Bornholdt 2006). Thus, the optimization of the 
proposed metric is equivalent to that of Hamiltonian, which provides the generalized 
modularity with an energy explanation. We also demonstrate in “Multilayer modularity 
from a static perspective” that the generalized modularity just finds communities with 
high cohesion, i.e., densely distributed internal efficient edges (not the couplings), which 
is more intuitive to understand and returns to its original definition in the single-layer 
case (Newman 2006). With such a static derivation, we are able to generalize the modu-
larity to multiple aspect cases, where the layers belong to different groups (Kivelä et al. 
2014) or the layer relation is flexible. We also propose a spectral algorithm called mSpec 
for optimizing the proposed modularity evaluation metric, which extends the spectral 
bisection algorithm in the single-layer case (Newman 2006).

We summarize our contribution in this paper briefly as follows:

  • We derive the multilayer modularity from a static perspective to address the confu-
sion in temporary networks and point out which kind of topological structure will 
lead to a high modularity value.

  • We generalize the multilayer modularity to adapt to networks with multiple aspects 
or there are flexible constraints on the layer relation.

  • We propose a spectral bisection algorithm (mSpec) for multilayer modularity opti-
mization based on the supra-adjacency representation for multilayer structure.

  • We apply the proposed metric to electroencephalogram (EEG) networks as an 
attempt of application.

The rest of this paper will be organized as follows: We review the related works that have 
been done in the literature in “Background.” The proposed multilayer modularity and the 
mSpec optimization will be described in “Multilayer modularity from a static perspec-
tive” and “mSpec: an iterative spectral optimization of multilayer modularity,” respec-
tively. The experimental results are reported “Experiments”. We conclude this paper 
“Conclusion.”
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Background
In this section, we will briefly introduce the network models that have been explored in 
the literature and the strategies that have been adopted to detect communities in multi-
layer networks, including evaluation metrics and optimization.

Network model

During the process of exploring the multilayer networks, different network models have 
been proposed (Mucha et  al. 2010; Boccaletti et  al. 2014; Kivelä et  al. 2014). Mucha 
et  al. (2010) linked multiple single-layer networks with couplings, which refer to the 
edges that connect the nodes with their copies in different layers, to represent a multi-
layer network. This model allows the layers to communicate through the couplings and 
is widely adopted especially by research involving dynamics defined on multilayer net-
works (De Domenico et  al. 2013; Gomez et  al. 2013). De Domenico et  al. (2013) pro-
posed a multilayer model based on tensor representation, which no longer restrains the 
between-layer connection to appear between node-copy pairs. In the rest of this paper, 
we will use between-layer edges to refer to this kind of connections that link a node with 
another node in different layers. On the one hand, the presence of between-layer edges 
makes the network more flexible. But on the other hand, a multilayer network with 
between-layer edges is very similar to a single-layer network in structure since they both 
have no limitations on the presence of edges (any node in any layer is allowed to link 
with another node in another layer). This will sometimes blur the boundary between 
single-layer and multilayer networks.

In more complex systems, the layers may be divided into several groups, which indi-
cate that multilayer networks should also be distinguished when observed from different 
aspects (Kivelä et al. 2014). For example, a cell phone contact network can be character-
ized by different means such as calling and texting. Meanwhile, this network is also tem-
poral since there are callings and texting at any time point. Thus, this layer is divided into 
two groups: according to time stamps or according to communication means. In order 
not to lose the information of the networks from either aspect, we have to construct a 
more complex multilayer network. There are actually two types of multilayer networks 
with multiple aspects, which have not been clearly distinguished in the literature. If a 
layer can belong to more than one aspects, which means the aspects may overlap, we can 
locate a single layer by indicating all aspects it belongs to. In the rest of this paper, we 
will call this an aspect–aspect representation, as shown in Fig. 1. In such representation, 
we need an F-dimensional (the number of aspects) vector to locate a layer. For example, 
the layer at the top right can be located by (2, 1) since the layer is in layer set 2 of aspect 
(I) and layer set 1 of aspect (II). When there are additional aspects, the dimension of the 
location vector grows. Therefore, it is a challenging task to represent this network by 
matrix with predetermined size.

In other networks with multiple aspects, each layer only belongs to a unique aspect. 
For instance, conventional electroencephalogram (EEG) networks (single-layer net-
works) for different individuals construct a multilayer network, where each layer cor-
responds to an EEG network of a person. With the fact that all testees receive the same 
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treatment, the layers reflect the common reactions to the test, but still hold the indi-
vidual difference between the testees. In addition, a person can take several EEG tests to 
obtain different EEG networks that all reflect the roles played by different regions of his 
brain in the test. Thus, we have two aspects observing the EEG network of the testees, 
enabling us to analyze individual differences and similarities as well as the role of differ-
ent brain regions simultaneously. With respect to different individuals, we may have as 
many aspects as the number of persons that takes the EEG test, and the layers within 
that aspect are several EEG networks obtained from several tests. To locate a layer in 
such networks, we just need to point out to which aspect the layer belongs and its posi-
tion within that aspect, as shown in Fig. 2. We will refer to such representation as aspect-
layer representation to distinguish with the aspect–aspect representation.

Actually, for a more convenient implementation, we can convert the aspect–aspect 
representation to the aspect-layer representation by absorbing aspects hierarchically 
into one aspect. We can interpret this process by considering how multidimensional 
arrays are stored on the disk. A 2-dimensional array is represented as an “array of arrays.” 
The multiple aspects are arranged in a similar way so that we can represent the network 
using matrices with predetermined size.

Existing evaluation metrics for community detection in multilayer networks

As one of the most concerned issues in network analysis, community detection aims at 
partitioning the network into groups of closely connected nodes (which is called a com-
munity) to obtain a coarse-grained representation, which helps us better understand the 
structure of the network. However, as far as we are concerned, most of existing evalua-
tion metrics designed for community detection in multilayer networks assume that the 
layers are independent. The multilayer stochastic block models (SBM), which are gen-
erative models that make inferences on the role of nodes given the network structure as 
evidence (Valles-Catala et al. 2014; Peixoto 2015), usually adopt two types of strategies. 

Layer 1 Layer 2

Layer 1
Layer2

Layer3

Fig. 1 Aspect–aspect representation of the multilayer network model (Kivelä et al. 2014). Aspect (I) has two 
layer sets and aspect (II) has three layer sets. The within‑layer edges are denoted with solid lines and the cou‑
plings are denoted with dotted lines where different colors indicate the couplings of different aspects
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They either learn a SBM on each layer, just like in single-layer networks, and then make 
global assignments based on the result of each layers, or they aggregate the layers to 
produce a “collapsed network” (Peixoto 2015). The final community assignment of each 
node is made based on the SBM result on the collapsed network.

De Domenico et  al. extended the well-known infomap method (Rosvall and Berg-
strom 2008) to the multilayer case (De Domenico and Lancichinetti 2015). The infomap 
method solves the community detection problem by considering its duality with a cod-
ing problem. It assumes that the community is able to capture the flows on the network 
so that by utilizing the community structure, we can greatly compress the coding length 
needed to describe a random process on the network (Rosvall and Bergstrom 2008). The 
goal is to minimize the “map equation,” which describes the coding length based on a 
specific partition and the transition probability of the random process. De Domenico 
et  al. defined the transition probability of a random walker in multilayer networks so 
that the map equation is able to describe the flow in multilayer scenarios. Such treat-
ment is intuitively correct, albeit they assume the node can reach the neighbors of its 
copies in other layers in a single step. In fact this implicitly erases the difference between 
layers—it is equivalent to consider a collapsed network.

Some other existing evaluation metrics also provide considerable solutions to the 
community detection problem in multilayer networks, such as multilayer clustering 
coefficient (the authors consider the overlapping of layers or the networks with multiple 
types of connections) (Bródka et al. 2010; Battiston et al. 2013), multilayer centrality (the 
authors consider a random walker to jump between layers through specific node pairs or 
edges) (De Domenico et al. 2013; Lambiotte and Rosvall 2012), etc. What these methods 
share in common is that they assume the layers are independent or can be aggregated 

Aspect ( I )

Aspect ( II )

Layer 1 Layer 2 Layer 3
Fig. 2 Aspect‑layer representation of the multilayer network model. The within‑layer edges are denoted 
with solid lines and the couplings are denoted with dotted lines where different colors indicate the couplings 
of different aspects. The position of a layer in a multilayer network can be specified by determining which 
aspect it belongs to and its serial number within the aspect. For example, the layer at the bottom right can be 
located as (2, 3) since it is in aspect (II) and layer 3. Such representation avoid the problem caused by increas‑
ing aspect numbers
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and attempt to find global roles for the nodes. Such treatments would have considerable 
effects as the network structure varies when we wish to find the similarity of the layers. 
But when we are interested in the different roles of nodes in the layers, these methods 
may generate a poor result, as we will discuss in the experiments. Thus, it is highly rec-
ommended to adopt an interconnected-layer structure.

Modularity is a widely adopted metric for community detection in single-layer net-
works (Newman and Girvan 2004; Newman 2010; Clauset et al. 2004; Newman 2006). 
The original definition of modularity is the edge difference between the current network 
and a null model, which is a rewired random network with the same degree distribution 
as the original network. Modularity reflects the cohesion of nodes within a community, 
so by optimizing global modularity one can find a partition of the network with commu-
nities within which the edges are densely distributed (Newman 2006). Recently, Mucha 
et al. extended the single-layer modularity to multilayer case using a Laplacian dynamic 
process defined on the multilayer network (without between-layer edges), which meas-
ures the stability of a community by comparing the probability of a random walker to 
stay in the same community at time t to the static solution (i.e., t → ∞) (Mucha et al. 
2010; Lambiotte et al. 2008).

This generalized modularity is of great contribution due to the fact that it combines 
the layers (using the couplings) on a model level for the first time and is adopted in a 
wide range of areas (Szell et al. 2010; Porter et al. 2011; Chiu and Westveld 2011). Never-
theless, this evaluation metric still has weaknesses. The multilayer modularity is derived 
based on a dynamic process (actually it is a random walk process), which means the ran-
dom walker is jumping between nodes as time goes. So what if the network is evolving 
over time? When it comes to temporal networks, whose layers can be interpreted as dif-
ferent time slices of an evolving network (i.e., the edges vary over time), things get con-
fusing, because the layers can be seen as different states in the network evolving process. 
Moreover, although the within-layer representation is the same as the conventional form 
proposed by Newman et al., it is not clear what kind of community the multilayer modu-
larity tends to find. It is of vital importance to know the bias of the evaluation metrics on 
the communities, so that we can pick appropriate evaluation metrics for corresponding 
network structures. Last but not the least, the coupling strength strategy needs modifi-
cation to adapt to more general cases, since the original one is brought without much 
discussion.

Optimization

Optimizing the single-layer modularity is an NP-hard problem (Brandes et  al. 2008), 
so we can only obtain a good approximation of the optimal solution efficiently. Since 
the single-layer modularity is actually a component of the multilayer modularity, the 
optimization of the multilayer modularity will also be NP-hard. To our best knowledge, 
there are rare algorithms except a generalized Louvain heuristic approach for multi-
layer modularity optimization (Mucha et  al. 2010). The Louvain method is a greedy 
iterative method which hierarchically aggregates two nodes into a group by mak-
ing the optimal modularity gain in each iteration. Then the generated node group is 
regarded as a new node and another iteration starts. This algorithm converges when 
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there is no such merger that increases global modularity value. Some tricks like adding 
a Kernighan-Lin node swapping step (Kernighan and Lin 1970) after each iteration will 
give better detection result. The Louvain method is a widely adopted heuristic for opti-
mizing quality functions of community structure, which implies that it does not uti-
lize the property of the evaluation metric. Meanwhile, the community assignments of 
nodes are not guaranteed to converge to a good approximation, so we may need to run 
the algorithm several times to obtain a relatively more reasonable solution. As will be 
discussed “Experiments,” we cannot control the community scale detected by the Lou-
vain method. When it comes to EEG networks, the Louvain method provides a rela-
tively fine-grained detection result, whereas we expect it to find two communities—the 
regions that are active or inactive.

In order to tackle the above issues, we adopt the aspect-layer representation for 
describing network structure which is intuitive to implement and derive the multilayer 
modularity from a static perspective (not involving the dynamic process). We also dis-
cuss the extension of the evaluation metric so as to make it applicable when considering 
different types of multilayer networks such as unbalanced multilayer networks, tempo-
ral networks or signed networks, etc. We propose a spectral method for optimizing the 
multilayer modularity which provides a stable solution and is helpful when we concern 
the scale of the discovered communities.

Multilayer modularity from a static perspective
We start with several general requirements that a quality function should satisfy as 
introduced in (Reichardt and Bornholdt 2006): (1) rewarding existing edges within a 
community, (2) penalizing non-existing edges within a community, (3) penalizing exist-
ing edges between two communities, and (4) rewarding non-existing edges between two 
communities. Thus, a general quality function takes the form

where Aij is the edge strength of nodes i and j, gi indicates the label of the commu-
nity that node i belongs to, and a, b, c, d are free parameters. The delta function δ(x, y) 
takes 1 if x = y, and 0 otherwise. Thus, the delta function ensures that the summa-
tion is performed between pairs of nodes belonging to the same community. In multi-
layer networks, since there are three kinds of edges (within-layer edges, couplings, and 
between-layer edges), we need to expand this function to enable the additional edge 
types. To be more explicit, the between-layer edges will be ignored in this paper since 
they blur the boundaries between such multilayer model and a single-layer network (i.e., 
both of them have no restraints on the appearance of the edges). But similar tricks can 
be designed to easily enable between-layer edges in this model. The expanded quality 
function can be written as

(1)

H(g) = −
∑

i �=j

aij Aijδ(gi, gj)
︸ ︷︷ ︸

Internal existing edges

+
∑

i �=j

bij (1− Aij)δ(gi, gj)
︸ ︷︷ ︸

Internal non-existing edges

+
∑

i �=j

cij Aij

[
1− δ(gi, gj)

]

︸ ︷︷ ︸

External existing edges

−
∑

i �=j

dij (1− Aij)
[
1− δ(gi, gj)

]

︸ ︷︷ ︸

External non-existing edges

,
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where we use s and r for the denotation of different layers, v and w for that of aspects. 
N and Vv represent the total number of nodes within a layer and total number of lay-
ers of aspect v and matrix A, C and g denote the within-layer adjacency, between-layer 
adjacency, and the community label matrix, respectively. Note that compared to Eq. 
(1), the number of parameters has doubled after taking between-layer couplings into 
account. Equation (1) points out the general form of an objective function for commu-
nity detection, and can be used to derive the Hamiltonian of a Potts model in statis-
tical mechanics as well as the modularity (Wu 1982; Reichardt and Bornholdt 2006), 
while Eq. (2) restricts the quality that an objective function in the multilayer case should 
satisfy. Since the parameters of Eq. (2) control the punishment (encouragement) and 
are free to choose, we can take a{v}ijs = c

{v}
ijs = 1− b

{v}
ijs = 1− d

{v}
ijs = 1− γ

{v}
s p

{v}
ijs  and 

e
{vw}
isr = f

{vw}
isr = g

{vw}
isr = h

{vw}
isr  to obtain a similar representation as the multilayer modu-

larity (Mucha et al. 2010), where p{v}ijs  known as null model is the penalty factor, and the 
parameter γ {v}

s  known as resolution parameter balances the contribution of punishment 
and award. Thus, we obtain a Hamiltonian function

(2)

HM(g) = −
∑

i �=j

F∑

v=1

Vv∑

s=1

a
{v}
ijs A

{v}
ijs δ

(

g
{v}
is , g

{v}
js

)

︸ ︷︷ ︸

Within-layer internal existing edges

+
∑

i �=j

F∑

v=1

Vv∑

s=1

b
{v}
ijs

(

1− A
{v}
ijs

)

δ

(

g
{v}
is , g

{v}
js

)

︸ ︷︷ ︸

Within-layer internal non-existing links

+
∑

i �=j

F∑

v=1

Vv∑

s=1

c
{v}
ijs A

{v}
ijs

[

1− δ

(

g
{v}
is , g

{v}
js

)]

︸ ︷︷ ︸

Within-layer external existing links

−
∑

i �=j

F∑

v=1

Vv∑

s=1

d
{v}
ijs

(

1− A
{v}
ijs

)[

1− δ

(

g
{v}
is , g

{v}
js

)]

︸ ︷︷ ︸

Within-layer external non-existing links

−
∑

sv �=rw

N∑

i=1

e
{vw}
isr C

{vw}
isr δ

(

g
{v}
is , g

{w}
ir

)

︸ ︷︷ ︸

Between-layer internal existing couplings

+
∑

sv �=rw

N∑

i=1

f
{vw}
isr

(

1− C
{vw}
isr

)

δ

(

g
{v}
is , g

{w}
ir

)

︸ ︷︷ ︸

Between-layer internal non-existing couplings

+
∑

sv �=rw

N∑

i=1

g
{vw}
isr C

{vw}
isr

[

1− δ

(

g
{v}
is , g

{w}
ir

)]

︸ ︷︷ ︸

Between-layer external existing couplings

−
∑

sv �=rw

N∑

i=1

h
{vw}
isr

(

1− C
{vw}
isr

)[

1− δ

(

g
{v}
is , g

{w}
ir

)]

︸ ︷︷ ︸

Between-layer external non-existing couplings

,

(3)

HM(g) = −
∑

ijsv

(

A
{v}
ijs − γ {v}

s p
{v}
ijs

)[

2δ
(

g
{v}
is , g

{v}
js

)

− 1
]

−
∑

isrvw

e
{vw}
isr

[

2δ
(

g
{v}
is , g

{w}
ir

)

− 1
](

2C
{vw}
isr − 1

)

.
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In Eq. (3), we notice that the terms that do not contain δ will be constant in optimization 
process, so we can rewrite HM(g) as

By using C̃{vw}
isr = e

{vw}
isr

(

2C
{vw}
isr − 1

)

, we can get the standard Hamiltonian form for sys-
tem with many particles

where the first term is proportional to Mucha’s modularity (Mucha et al. 2010) (except 
the value C̃{vw}

isr  takes differs from Cijs in (Mucha et  al. 2010) which will be discussed 
“Selection of C̃{vw}

isr ”). The last two terms can be interpreted as bias that is linear with the 
network size (number of edges and couplings), which is constant during the minimiza-
tion. Therefore, minimizing Hamiltonian is equivalent to optimizing modularity. Finally 
we obtain the modularity representation

Here p{v}ijs  is the within-layer edge strength of the null model. We can take different null 
models for different network types such as directed networks, bipartite networks, etc. 
(Mucha et al. 2010; Bazzi et al. 2014). Traditionally, in an undirected network, we take 
Newman–Girvan null model (i.e., a uniform network) 

k
{v}
is k

{v}
js

2m
{v}
s

, so

Now we can take a closer look at the choice of the parameters in Eq. (2) and we take

which groups the edges into two types and gives different punishment (encouragement). 
The values of the parameters are actually the efficient number of each type of edges (the 

(4)

HM(g) = −2
∑

ijsv

(

A
{v}
ijs − γ {v}

s p
{v}
ijs

)

δ

(

g
{v}
is , g

{v}
js

)

− 2
∑

isrvw

e
{vw}
isr

(

2C
{vw}
isr − 1

)

δ
(
gis, gir

)

+
∑

sv

(

1− γ {v}
s

)

· 2m{v}
s +

∑

isrvw

(

2C
{vw}
isr − 1

)

e
{vw}
isr .

(5)

−
1

2
HM(g) =

∑

isjrvw

[(

A
{v}
ijs − γ {v}

s p
{v}
ijs

)

δsrδvw + C̃
{vw}
isr δij

]

δ

(

g
{v}
is , g

{w}
jr

)

−
1

2

{
∑

sv

(

1− γ {v}
s

)

· 2m{v}
s +

∑

isrw

C̃
{vw}
isr

}

,

(6)QM(g) =
∑

isjrvw

[(

A
{v}
ijs − γ {v}

s p
{v}
ijs

)

δsrδvw + C̃
{vw}
isr δij

]

δ

(

g
{v}
is , g

{w}
jr

)

.

(7)
QM(g) =

∑

isjrvw

[(

A
{v}
ijs − γ {v}

s

k
{v}
is k

{v}
js

2m
{v}
s

)

δsrδvw + C̃
{vw}
isr δij

]

× δ

(

g
{v}
is , g

{w}
jr

)

.

(8)







a
{v}
ijs = c

{v}
ijs = 1− γ

{v}
s p

{v}
ijs

b
{v}
ijs = d

{v}
ijs = γ

{v}
s p

{v}
ijs

e
{vw}
isr = f

{vw}
isr = g

{vw}
isr = h

{vw}
isr ,
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edge difference of current network structure and the null model). In other words, a posi-
tive modularity is obtained if the edges and couplings within the community are more 
than those between different communities. A higher modularity is reached when the 
edges are more densely distributed within the communities.

Selection of C̃{vw}
isr

In Mucha et al. (2010) proposed a multilayer modularity based on a Laplacian dynamic 
defined on multilayer network model

Although similar to the proposed form as Eq. (7) in structure (taking v = w to obtain 
a single-aspect representation of modularity in this paper), Mucha et  al. did not dis-
cuss much about the coupling strength Cjsr. They chose Cjsr to take binary value {0,ω} 
to represent the absence and presence of couplings and ω controls the contribution of 
couplings. In the proposed form, we notice that C̃{vw}

isr = e
{vw}
isr · (2C

{vw}
isr − 1) and if we 

take e{vw}isr = ω , C̃{vw}
isr  takes {−ω,ω} representing the absence and presence of cou-

plings in a specific community. Compared with Mucha’s modularity, the proposed 
form will punish those couplings that do not show up, so the couplings that are absent 
will also provide information about the community structure. Additionally, since 
C̃
{vw}
isr = e

{vw}
isr · (2C

{vw}
isr − 1) and e{vw}isr  is totally free, the proposed form of multilayer 

modularity is flexible to adjust to various types of multilayer networks. We will use two 
typical types of network as an example.

Unevenly distributed views

Consider a common type of multilayer network whose distribution of layers is uneven, 
i.e., the intervals between pairs of layers can be unequal. In this situation, simply letting 
C̃
{vw}
isr  take the same value without considering the closeness of layers will cause large 

errors. For instance, suppose we have a multilayer electroencephalogram network in 
which each person is treated as a layer. Apparently, the age difference and gender of the 
patients will greatly influence the result (Sharma et al. 2015; Repovs et al. 2011). There-
fore, we should enable the proposed model to handle such networks with unevenly dis-
tributed layers. Noticing e{vw}isr  is a free parameter governing the amplitude of C̃{vw}

isr , we 
can adjust e{vw}isr  according to the closeness of the layers as

where Msr measures the closeness of layer s and r. Here we still use ω to control the 
coupling strength so as to control the balance between within-layer edges and between-
layer couplings.

Temporal networks

In some research, a temporal network is defined as a sequence of networks correspond-
ing to successive time points with between-layer couplings indicating the continuity 

(9)Q′ =
1

2µ′

[(

Aijs − γs
kiskjr

2ms

)

δsr − Cjsrδij

]

δ(gis, gjr).

(10)e
{vw}
isr = ω ·

M
{vw}
sr

maxs,r,v,w M
{vw}
sr

,
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between adjacent layers (Holme and Saramäki 2012; Bazzi et al. 2014; Berlingerio et al. 
2013). For example, suppose in a phone calling temporal network, two nodes are linked 
by an edge in two successive layers. If there is a coupling connecting the corresponding 
nodes in both layers, then we can tell that this call lasts through these two time points. 
Otherwise we can tell that they have two calls at both of the time points. Therefore, 
between-layer couplings only appear between adjacent layers in such temporal net-
works. In order to satisfy this, we let e{vw}isr = 0 when |s − r| �= 1 or the link between the 
nodes does not last between two time points.

Notice that the interval between two time slices can also be unequal. For example, the 
Facebook social networks of a person when he was 15 and 16 will be similar but they 
may have large difference compared with the network when he was 20. Such time inter-
val problem can be addressed just like the unevenly distributed layers discussed before.

Signed networks

Connections in complex systems reflect either positive or negative interactions between 
nodes, which can be modeled as signed networks that contain edges with positive or 
negative weight (Doreian and Mrvar 2009; Yang et al. 2007). The effect of both kinds of 
edges on the structure of such networks should be distinguished: the contribution of 
positive edges should be awarded, while the contribution of the negative edges should 
be punished. In Mucha et al. (2010) derive the modularity by using a Laplacian dynam-
ics operator that contains the sign information. We can bring in signed edges into the 
proposed metric by representing the adjacency A{v}

ijs  as well as the null model p{v}ijs  as the 
combination of both kinds of edges in Eq. (2)

Thus, we obtain the signed version of the proposed metric

The positive and negative weighted terms are equivalent to considering the within-layer 
modularity as the combination of two “networks” with opposite contribution. We can 
now conclude that the proposed metric is able to deal with signed networks by consider-
ing the negative edges as additional networks of the within-layer modularity.

A
{v}
ijs = A

{v}+
ijs − A

{v}−
ijs ,

γ {v}
s p

{v}
ijs = γ {v}+

s p
{v}+
ijs − γ {v}−

s p
{v}+
ijs

(11)

QM(g) =
1

µ

∑

ijsr

{[(

A
{v}+
ijs − γ {v}+

s

k
{v}+
is k

{v}+
js

2m
{v}+
s

)

−

(

A
{v}−
ijs − γ {v}−

s

k
{v}−
is k

{v}−
js

2m
{v}−
s

)]

δsrδvw

+C̃
{vw}
isr δij

}

δ

(

g
{v}
is , g

{w}
jr

)

.
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mSpec: an iterative spectral optimization of multilayer modularity
In order to find a good approximation of the optimal solution of multilayer modular-
ity maximization problem, Mucha et al. (2010) adopted a generalized Louvain method, 
which hierarchically merges two communities to increase the modularity score. The 
result is improved by a KL-swap step that swaps the nodes between the communities 
to see if further increase on modularity score is possible (Kernighan and Lin 1970). But 
such optimization method is unstable, so we need to run it multiple times to avoid con-
verging to a local maxima. And it sometimes fails to find expected number (always small) 
of communities, since the algorithm stops before the number of communities decreases 
to the desired value. Newman et al. (2006) proposed a spectral method for single-layer 
modularity optimization which hierarchically divides the network into two communi-
ties. Inspired by their work, we propose a spectral bisection method called mSpec based 
on the supra-adjacency representation of the multilayer network. This method will pro-
vide more stable performance as will be discussed in “Experiments”.

Supra‑adjacency representation: an equivalent single‑layer network

In multilayer network analysis, a supra-adjacency always refers to a single-layer network 
which is flattened from a multilayer network (Kivelä et al. 2014; Boccaletti et al. 2014; 
Sánchez-García et al. 2014; Bazzi et al. 2014; Cozzo et al. 2015). The basic idea is to com-
bine two layers which are represented by two N × N  graphs, to obtain an expanded layer 
which is represented by a 2× 2 block graph with the diagonal blocks representing the 
within-layer adjacency of each layer and off-diagonal blocks representing the between-
layer couplings. By repeating such flattening step until the number of layers reduces to 
one, we obtain an expanded equivalent single-layer network containing all nodes in the 
original multilayer network, where the nodes are distinguished from their copies in dif-
ferent layers and aspects (see Fig. 3).

Based on the supra-adjacency representation, we obtain a mapping from a multilayer 
network to an equivalent single-layer network where the mapped subscript for node i in 
layer s{v} is

with x ∈
[
1,
∑F

v VvN
]
.

We therefore can apply the same mapping on the modularity matrix which 
records the modularity of each node pair (i,  j) in each layer pair (s{v}, r{w}) to obtain a 
supra-modularity-matrix

We will illustrate that this supra-modularity-matrix maintains all the information of the 
original multilayer network and can be utilized for optimization.

(12)x = i + (s − 1)N +

v−1∑

v′

Vv′N

(13)
B
{vw}
isjr = �

{v}
s ·

(

A
{v}
ijs − γ {v}

s

k
{v}
is k

{v}
js

2m
{v}
s

)

δsrδvw + δijC̃
{vw}
jsr

= Dxy
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Dividing networks into two communities

Let the index matrix L identify the community label of each node in each layer

Then we can rewrite the modularity function as

We notice that

which means once the graph is given, χ is a constant value, and will not influence the 
global maximization of modularity function. Also, the 1

µ
 and 12 values in the parentheses 

(14)L
{v}
is =

{

+1 if node i in layer s{v} is in community 1
−1 otherwise.

(15)Q =
1

µ

∑

isjrvw

B
{vw}
isjr

(
L
{v}
is L

{w}
jr + 1

2

)

.

(16)

∑

isjrvw

B
{vw}
isjr = �

{v}
s ·

∑

ijs

(

A
{v}
ijs − γ {v}

s

k
{v}
is k

{v}
js

2m
{v}
s

)

+
∑

isrvw

C̃
{vw}
isr

=
∑

sv

(

1− γ {v}
s

)

· �{v}s 2m{v}
s +

∑

isrvw

C̃
{vw}
isr

= χ

Fig. 3 Supra‑adjacency matrix of a multilayer network with three aspects. The first aspect consists of two lay‑
ers and the others contain only one layer. The non‑diagonal blocks of the supra‑adjacency matrix represent 
the between‑layer adjacency of the layers. Since we only consider the between‑layer couplings, these blocks 
are all diagonal. The diagonal blocks record the within‑layer adjacency. Since we only discuss about undi‑
rected networks, the supra‑adjacency matrix is symmetric
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do not make sense in the maximization, either. So, our objective function can be rewrit-
ten as

Then we can map the multilayer network to the corresponding supra-adjacency as 
described in Eq. (13)

where the mapping is performed according to Eq. (12). We can also bring in a new label 
vector z with

Therefore, we can represent the objective function Eq. (17) as

By applying this mapping, the problem is converted to be a relatively simple one, on 
which we can apply the same spectral method used in the single-layer case. We can solve 
it by utilizing the eigenvectors and eigenvalues of matrix D as follows:

We can then represent z as the linear combination of the eigenvectors of D, i.e., 
z =

∑

x axux, where ux is the x-th eigenvector of D and ax is the corresponding weight. 
We can obtain ax = z · uTx . Meanwhile, if βx is the corresponding eigenvalue of ux, we 
can obtain uTx D = (D · ux)

T = βxu
T
x  according to the fact that D is symmetric because 

B
{wv}
jris = B

{vw}
isjr  which means Dxy = Dyx. Then Eq. (21) can be written as

We know that in order to maximize Q, supposing that the eigenvector corresponding to 
the largest eigenvalue is uM, all we need to do is to assign the vector z according to uM

Thus, we obtain the optimal division using the supra-modularity-matrix.

Dividing networks into more than two communities

To divide the network into more communities, we have to rewrite the additional modular-
ity contribution of further division. Suppose the subcommunities after dividing commu-
nity C are A and B, we have

(17)
Q =

∑

isjrvw

B
{vw}
isjr L

{v}
is L

{w}
jr .

(18)B
{vw}
isjr = Dxy,

(19)zx = L
{v}
is .

(20)
Q =

∑

xy

Dxyzxzy.

(21)
Q =

∑

xy

Dxyzxzy = zTDz.

(22)Q =
∑

x

axu
T
x Dz =

∑

x

axu
T
x · zβx =

∑

x

a2xβx.

(23)zx = L
{v}
is =

{
1 if [uM]x ≥ 0,
−1 otherwise
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where L′{w}
jr ∈ {−1,+1} is the community label indicating to A or B the node belongs. 

Here we use the fact that the sum of entries of modularity matrix B is constant once the 
network is determined so that it will not influence the optimization. Then the multilayer 
modularity gain can be written as

where each entry of matrix B(C) is

Similarly, we also bring in an assistant matrix D to maximize the global modular-
ity, B{vw}

isjr = Dxy. Notice that 
∑

j′r′w′∈C B
{vw′}
isj′r′  is constant, B(C) is also symmetric and 

∑

isjrvw B
{vw}(C)
isjr = 0, so we can repeatedly apply the bisection method on the detected 

communities using D as the modularity matrix B until the modularity gain �Q does not 
increase.

Complexity analysis

The mSpec method is based on a linear mapping and spectral decomposition. The time 
complexity of the linear mapping is O(

∑F
v VvN ), where N is the total number of nodes in 

a single layer and Vv is total layers within aspect v. By applying Lanczos algorithm (Fre-
und et al. 1993), finding the dominant eigenvector can be carried out in O((

∑F
v VvN )2) 

(Newman 2006). Thus, suppose there are k divisions, we can complete the total calcula-
tion in time O(k(

∑F
v VvN )2). The total number of divisions depends on the depth of the 

division tree, which is expected to be log(
∑F

v VvN ) in average. Thus the total complex-
ity is O([FV̄N ]2 log(FV̄N )), where V̄ =

∑F
v Vv is the average layer number and F is the 

total number of aspects.

(24)
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B
{vw′}
isj′r′ .
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Experiments
In this section, we present community detection results using the proposed modularity 
in several multilayer networks. As we will demonstrate in the results, (1) the proposed 
method can be applied to a wide range of networks by flexibly adjusting the couplings 
and parameters and (2) the mSpec is more stable than the generalized Louvain method.

We conduct several experiments on a well-known benchmark network to discuss 
how the parameters can influence the results of community detection. The proposed 
method is also applied to the electroencephalograph (EEG) networks as an attempt of its 
application, the result of which turns out to coincide with the functional division of the 
human brains. In order to evaluate the performance of the proposed modularity optimi-
zation method (mSpec), it is compared with baseline optimization methods. As will be 
reported, the proposed optimization performs more reliably as the coupling scale varies.

The networks we use in experiments are

1. Parameter analysis data:
•  Zachary Karate Club network: network of friendships between 34 members of a 

karate club in a US university (Zachary et al. 1977).
2. Comparison data:

• CKM-Physicians Innovation multilayer network: a network of the physicians’ 
adoption of a new drug, tetracycline, in four towns (Coleman et al. 1957). There 
are 246 nodes and 3 layers (according to three questions asking about the rela-
tionship between the physicians).

•  CS-Aarhus social network: a multilayer social network consists of five online and 
offline relationships (5 layers) between 61 employees of Computer Science depart-
ment at Aarhus (Magnani et al. 2013).

•  Kapferer Tailor Shop network: a time-varying network recording the interactions 
in a tailor shop in Zambia over 10 months (Kapferer 1972). The network consists of 
two layers according to the interaction types and 39 nodes.

•  Krackhardt High-Tech network: three kinds of social relationships (Advice, Friend-
ship and “Reports to”) between 21 managers of a high-tech company (Krackhardt 
1987).

•  London Transportation network: multilayer transportation network of 369 Lon-
don train stations with three layers recording different types of connection (under-
ground, overground, and DLR) (De Domenico et al. 2014). This network is rela-
tively sparse.

•  Padgett Florentine Families network: the network of marriage alliances and busi-
ness relationships between Florentine families in the Renaissance (Padgett and 
Ansell 1993). There are 16 nodes in total.

•  Vickers Class Relation network: the networks collected from 29 seventh-grade stu-
dents in an Australia school about three questions on the classmate relationship 
(“Get on with,” “Best friend,” and “Prefer to work with”) (Vickers and Chan 1981).

3. Case study data: EEG network
•  Signed multilayer network that characterizes the correlation of the testees’ brain 

regions during a visual stimuli test. The nodes include 128 scalp electrodes as 
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well as a standard control electrode and 11 testees and several test records form 
a two-aspect multilayer network.

Parameter analysis

In order to study how the parameters (i.e., γs and ω) in the proposed method influ-
ence the community detection results, we conduct experiments with similar exper-
imental settings as Mucha et  al. do in (2010). We construct a ten-layer network with 
resolution parameter γs ∈ {0.1, 0.2, . . . , 1}, where the adjacency of each layer is the 
benchmark network Zachary Karate network (Zachary et al. 1977) and we assume that 
the between-layer coupling exists between any pair of nodes and their copies. We per-
form community detection on the generated network with different coupling strength 
parameters ω ∈ {0, 0.01, 0.1, 1, 10} , and the community assignment for each node in ten 
layers is depicted with different colors.

From Fig. 4 we can see, when ω = 0, the layers show great divergence due to the value 
of resolution parameter γs. As γs grows, the network is inclined to split into subcommu-
nities. By comparing with standard community label, we see the detection result with 
parameter γs setting from 0.5 to 0.9 matches the ground truth, while there are misclas-
sifications in the rest. As ω increases, we see the nodes in different layers tend to be 
assigned to the same community. When ω = 1, we see that every node has the same 
community label as its copies in other layers, and the detection result consistent with the 
ground truth.

We can then conclude that, the resolution parameter γs controls the tendency of the 
splitting and the coupling strength parameter ω controls the consistency of the com-
munity assignment between layers. Too large or too small γs will cause misclassification, 
which can be fixed, however, by the between-layer couplings. Meanwhile, too small ω 
will lead to the isolation between layers. When there are noises in the network data, the 
result can be poor (as shown in Fig. 4a) since cross-layer information has not been fully 
utilized. Nevertheless, the peculiarity of each layer will be damaged by large ω (as shown 
in Fig. 4d).

In "Comparison results", we will compare the performance of several algorithms as the 
network scale varies, where we bring in a parameter ρ to explicitly control the coupling 
density. However, since ρ reflects the density of the raw network data, we can consider it 
as a super parameter that is unalterable once the network is given.

Comparison results

For comparison, several state-of-the-art approaches are used so as to evaluate the per-
formance of the proposed optimization method (mSpec):

1. mLouv: Multilayer Louvain-like method plus KL-swap improvement, which is the 
most widely adopted heuristic method for modularity optimization (Mucha et  al. 
2010);

2. sMSpec: Single-layer spectral optimization method that will be applied on the mean 
of adjacency matrices of all layers (Tang et al. 2010);

3. sMSpec: Single-layer spectral optimization method applied on each layer (Newman 
and Girvan 2004; Newman 2006).
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In order to examine the reliability of the proposed method, the detection is performed 
over seven datasets with different between-layer coupling density ρ. The parameter ρ 
depending on the raw network data reflects how closely connected any two layers are, 
and in experiments, we generate random between-layer couplings according to the prob-
ability ρ. The nodes are linked with all its copies in other layers when ρ = 1 and there are 
no couplings at all when ρ = 0. The result is evaluated by the modularity value Q com-
puted according to Eq. (7) using the community assignment of each algorithm, as shown 
in Tables 1, 2, 3, 4, 5, 6, and 7. The variance and mean of the modularity value reflect the 
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Fig. 4 Community detection results with different parameters. The community assignment is distinguished 
by different colors. The network consists of ten identical layers each of which is the network of Zachary Karate 
Club with resolution parameter γs ∈ {0.1, 0.2, . . . , 1} and detection is performed with coupling strength 
parameter ω = 0, 0.01, 0.1, 1, 10 , respectively
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stability and reliability of each algorithm against network with different between-layer 
coupling scales.

As the results suggest, the proposed method significantly outperforms the existing 
methods, achieving 18.65% improvement over the second best in terms of mean mod-
ularity values while maintaining a relatively low variances. The mLouv method and 
sMSpec method show low Q when the couplings are sparse (small ρ) and high Q when 
the couplings are dense (large ρ), while sMSpec performs oppositely. This is because the 
mLouv and sMSpec methods incline to look for a global community label for all nodes 
and ignore the peculiarity of each layers, so that when the couplings are sparse (which 
implies high heterogeneity between layers), such algorithm fail to make a distinguished 
assignment. Similarly, the performance of sMSpec degenerates seriously when the 
couplings are dense since it runs detection over each layer, respectively, and lacks the 
consideration of consistency. The proposed method is based on a supra-adjacency repre-
sentation of the multilayer network, with ω dominates the consistency. This guarantees 
the reliable performance of the proposed method against networks with different condi-
tions of the connection between layers. In a nutshell, the proposed method performs 

Table 4 Comparison of modularity result of Krackhardt High-Tech network

The best mean values are marked in italics

ρ Variance Mean

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mSpec 73.9 69.6 65.5 65.3 84.7 87.6 99.9 108.5 111.3 125.2 171.2 1432.1 106.6

mLouv −48.5 −24.5 −10.5 −4.5 43.5 27.5 75.5 87.5 95.5 135.5 183.5 6623.4 70.1

sMSpec −58.4 −34.4 −23.6 −14.4 33.6 17.6 65.6 77.6 85.6 125.6 173.6 6701.1 60.5

sMSpec 29.0 49.0 48.0 53.0 83.0 77.0 83.0 91.0 99.0 105.0 131.0 1163.4 85.7

Table 5 Comparison of modularity result of London Transportation network

The best mean values are marked in italics

ρ Variance Mean

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mSpec 29.5 29.5 29.5 29.5 32.9 34.9 37.0 43.5 37.7 45.6 53.5 102.3 39.4

mLouv −2.2 1.8 1.8 5.8 17.8 21.8 25.8 41.8 37.8 45.8 53.8 464.9 28.3

sMSpec −2.5 1.5 5.5 5.5 17.5 21.5 25.5 41.5 37.5 45.5 53.5 464.9 28.0

sMSpec 24.2 26.2 24.2 24.2 34.2 28.2 36.2 34.2 38.2 36.2 40.2 61.5 33.9

Table 6 Comparison of modularity result of Padgett Florentine Families network

The best mean values are marked in italics

ρ Variance Mean

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mSpec 176.9 191.4 189.9 201.4 218.8 236.1 228.4 226.0 299.1 313.9 345.9 4803.6 257.1

mLouv 48.1 96.1 106.1 124.1 160.1 216.1 228.1 212.1 300.1 320.1 352.1 12,262.7 222.9

sMSpec 45.0 93.0 103.0 121.0 157.0 213.0 225.0 209.0 297.0 317.0 349.0 12,262.7 219.9

sMSpec 176.3 192.3 194.3 200.3 214.3 238.3 234.3 224.3 236.3 262.3 252.3 885.8 227.6
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stably as the coupling density varies so that is relatively reliable when the condition of 
the raw network is unclear.

Case study: EEG network

The event-related potentials (ERPs) which are measured by means of electroencepha-
lography (EEG) is the measured brain response of testee with a specific stimuli (Cahn 
and Polich 2006; Dietrich and Kanso 2010). Since the EEG monitoring collects electrical 
impulse data from the electrodes placed on the scalp, it should be totally non-invasive in 
most cases except for an inevitable invasive electrode for specific application. Moreover, 
the monitoring process is silent so that the auditory disturbance is reduced to a very sub-
tle level and is tolerant to subject movement. Owing to the numerous advantages, EEG 
is widely adopted as the analysis tool for brain activity, especially on children testees. 
Nevertheless, the traditional output of the EEG monitoring manifests as waveforms, so 
that the analysis of them is unintuitive and usually relies on the experiential judgements 
of the EEG providers. In recent years, more and more research focus is concentrated on 
the analysis of EEG data, but almost all of such work focuses on the average performance 
of similar testees, which may lead to the loss of information about each distinct testee 
(Alexander-Bloch et al. 2012; Chen et al. 2008; Meunier et al. 2009). In this experiment, 
we attempt to apply the proposed method on the signed multilayer network generated 
from the EEG data to explore the functional performance of the regions of brain. We 
compare the detected result with a standard empirical brain functional region division 
to find a surprising match between clinical experience and graph data mining (Power 
et al. 2011).

We regard the 128 electrodes and a standard control electrode placed on the testee’s 
scalp as 129 nodes involved, and calculate the correlation coefficients between the ERPs 
recorded from each pair of electrodes when the testee is given a series of visual stimuli 
as the edge weights between them. Thus, we generate a single-layer network based on 
the EEG data of one test record of a specific testee. By combining the networks gener-
ated in this way from 11 testees and their several test records, we obtain a two-aspect 
EEG network that contains the information of the brain activities of all testees. Since the 
electrodes are placed identically for every testee, we assume the between-layer coupling 
exists between each pair of corresponding electrodes. We can adjust the parameter γs to 
control the resolution and ω to control the consistency of the detection result of each 
testee. The detection results on the first four testees are shown in Fig. 5.

We find that the EEG networks are always divided into two communities, yellow and 
blue, in all experiments. By comparing the detection results with the corresponding 
adjacency, we observe that the edges with negative weights mainly lie between the two 
communities and within each community the nodes are connected by the edges with 
positive weights. Therefore, in order to better illustrate the brain terrain, we directly 
treat the dominant eigenvector uM of the modularity matrix as the detected community 
labels of the corresponding nodes for plotting since such non-binary labels make it pos-
sible to picture the contour of the brain. Say, the dominant eigenvector is (0.5, 0.2, −0.1, 
−1) and the label vector will also be (0.5, 0.2, −0.1, −1), where the last two nodes will be 
dyed blue (the darkness distinguishes the magnitude) and the first two will be dyed yel-
low. Meanwhile, since such treatment also maximizes the modularity function, the result 
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is more accurate and reliable than discrete community labels. We present the continuous 
community label as the topographic map of the brain where the two communities cor-
respond to regions with different colors. By adding the standard brain function region 
division to the figures, we find the detection results reach a surprising match with the 
widely accepted brain functional partition. The visual cortex (red diamond), prefrontal 
cortex (purple triangle), and the premotor cortex (white square) share the same com-
munity, while the auditory cortex which is denoted with blue circles belongs to the other 
community. The former is more or less relevant to the visual and attention, while the lat-
ter is closely related with audition. The results coincide with the clinical experience that 
the visual and audition always demonstrate relatively strong divergence and interaction. 
Moreover, from the color bar attached, we can notice the magnitude of continuous com-
munity label of the blue part which corresponds to visual brain region is much higher 
than that of the yellow part which refers to the auditory region. The magnitude of the 
continuous label indicates the contribution of the node to the global modularity value, 

Fig. 5 The detection result of EEG network. We randomly pick four layers from the multilayer network. The 
standard brain region division is plotted with different symbols: (1) purple triangle prefrontal cortex that con‑
trols thinking, perception, information memory, and attention; (2) white square premotor cortex that controls 
eye movements; (3) blue circle auditory cortex that controls the audition; (4) green star somatosensory cortex 
that controls the sense of touch; (5) red diamond visual cortex that controls the sense of sight. The detected 
result is presented as the topographic map of the brain where we directly treat the dominant eigenvector µ 
as the community label. The blue region corresponds to the negative terms of µ , while the yellow region cor‑
responds to the positive terms, where the darkness indicates the magnitude of corresponding label value
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which can imply how active the region is during the test. Therefore, we see the visual 
region is much more active than the auditory region, which coincides our intuition.

To sum up, this experiment on EEG network shows encouraging results about the fea-
sibility of the proposed method on empirical networks. It also provides a new direction 
of the application of the proposed method and similar approaches.

Conclusion
In this paper, we discussed the representation of multilayer networks with multiple 
aspects and then derived the multilayer modularity based on the assumption of the 
contribution of the edges and couplings. According to the derivation, we demonstrate 
that the modularity prefers the community structure where the edges and couplings 
are densely distributed within the communities. Then we proposed a spectral bisection 
method for optimization of the modularity based on the supra-adjacency representation. 
In “Experiments,” we reported the performance of the proposed evaluation metric as the 
parameters change and the comparison result with some other baseline methods. We 
applied the proposed method on a two-aspect EEG network as an attempt of applica-
tion, and the results coincide with the functional region of the brain.
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