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Introduction
With the development of pattern recognition, many researchers focus on the topic of 
face recognition. Feature extraction is an important factor influencing the final clas-
sification results. The identity-preserving features are extracted through hierarchical 
nonlinear mappings. Good image representation features are expected to have high dis-
criminative ability and robustness. During the recent decades, there have been a large 
amount of literature on developing traditional image feature-extraction methods, such 
as local binary patterns (LBPs) (Huang et al. 2011), LTP (Tan and Triggs 2010), scale-
invariant feature transform (SIFT) (Lowe 2004), speeded-up robust features (SURF) (Bay 
et al. 2006), and histogram of oriented gradient (HOG) (Dalal and Triggs 2005). Recently 
deep learning-based methods have shown great success in face recognition (Zhu et al. 
2013; Wen et al. 2016), but the complexity of deep learning-based methods is very high. 
Here, we mainly focus on hand-crafted feature descriptors, since these kinds of methods 
are very effective and efficient.

As can be seen, the gradient orientation of each pixel in a face image plays a more 
important role in the image feature extraction, such as Weber Local Descriptor (WLD) 
(Chen et  al. 2010), SIFT (Lowe 2004), HOG (Bay et  al. 2006), and histograms of the 
second-order gradients (HSOG) (Huang et al. 2014). In the above methods, the gradi-
ent orientation is calculated directly through the corresponding pixel points, but when 
there are changes in lighting conditions, noise, and other external factors, the informa-
tion expressed by the gradient orientations is unstable. In view of this, Qian et al. (2013) 
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proposed discriminative histograms of local dominant orientation (D-HLDO) method. 
First, D-HLDO adopts a PCA-based (Hotelling 1932; Belhumeur et al. 1997) method to 
obtain the dominant orientation and the corresponding energy value of each pixel in the 
face image. These two kinds of information contain a wealth of structural information, 
such as textures, edges, spots, and so on. Then, an image is divided into series of over-
lapping regions, and the 1D statistical histograms can be acquired by accumulating the 
relative energies of different dominant orientations on a local region. The histograms of 
all the regions are combined together to produce a high-dimensional feature with spa-
tial information and local structural information. Finally, the local mean-based, nearest-
neighbor discriminant analysis (LM-NNDA) method is used to get the low-dimensional 
and discriminative D-HLDO feature vector. However, the process of SVD in PCA is 
very time consuming, so in this paper, the dominant orientation and the corresponding 
energy value of each pixel were obtained by calculating the direction and the amplitude 
on the gradient map directly. Furthermore, we apply the LM-NNDA method to reduce 
dimension to get the low-dimensional and discriminative LDOFH feature. The steps of 
our image feature-extraction method are illustrated in Fig. 1. To show the effectiveness 
of the proposed LDOFH method in face recognition, we evaluate this method on two 
face databases: the AR and IMM face databases. Our method is nearly three times faster 
than Qian’s method while we obtain the approximate equal recognition rate.

The remainder of this paper is organized as follows. “Related work” briefly intro-
duces the image feature-extraction method, D-HLDO, proposed by Qian; “LDOFH for 
feature extraction” develops our proposed image feature-extraction method, LDOFH 
and describes its merits. “Experiments” shows the experimental methodology and the 
results. “Conclusions and future work” offers the conclusions drawn and scope for future 
work.

Related work
The related work from Qian is introduced in this part. In D-HLDO method, the domi-
nant orientation and the corresponding energy values are acquired by PCA.

Principal component analysis for local orientation and energy

In this section, we mainly introduce the PCA-based method to estimate the local gradi-
ent orientation. PCA is a special case of KL transform (Deprettere 1988). It minimizes 
the mean-square approximation error to get a set of optimal basis vectors. This can rep-
resent the given data with lower dimension. PCA can be achieved by eigenvalue decom-
position of the data covariance matrix or singular value decomposition (SVD) of the data 
matrix. Here, we introduce the method SVD.

Fig. 1  An overview of our image feature-extraction method
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Specifically, the gradient matrix over a P × P window (wi) around the interesting point 
(x, y) of an image is defined as

where gx(k) and gy(k) represent the gradients of the image at point (x, y) in x and y direc-
tions, respectively. We can get useful local information from the gradient matrix G of the 
local patch in this image. The local dominant orientation can be obtained by SVD on the 
gradient matrix G:

where U is a p × 2 matrix, V is a 2 × 2 matrix, S is a 2 × 2 diagonal matrix, and diagonal 
elements are singular values. The S matrix also expresses the energy values of the cor-
responding pixels in the dominant orientation and its perpendicular direction. First col-
umn of V gives the dominant orientation of the local gradient.

The dominant orientation of the local patch (overlapped) can be obtained through two 
steps. The first step is to use a gradient operator to estimate the gradient map of the 
entire image. The second step is to use the Eq. (3) to perform the SVD of matrix Gi (Gi is 
the gradient vectors matrix in the ith local patch), which can be obtained from the fol-
lowing formula:

Since v1 = [v1,1, v1,2] contains the dominant orientation information in the local region, 
the angle θi of the dominant orientation is defined as follows:

The singular values s1, s2 express the energy information, and the relative energy value 
of the dominant orientation in a local patch is defined as

where � (� ≥ 0) is a regular parameter to avoid the denominator being zero and restrict 
the effect of noise.

The resulting matrix O = [(θ1, e1), . . . (θi, ei), . . . (θN , eN )]
T contains dominant orienta-

tion and energy information of an image, and there are N pixels in the image.

Constructing histogram of local dominant orientation

The dominant orientation map and the corresponding energy map over the whole image 
can be achieved through the PCA method. Considering the local structural and spatial 
information, the dense spatial histogram represents a better representation. The domi-
nant orientation map is divided into a series of overlapping rectangular regions R1 . . .RL , 
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where L is the number of divided regions. We build a 1D dominant orientation histo-
gram on each region:

Each histogram contains b bins; for the unsigned gradient direction, each bin cov-
ers (180/b)°; and for the signed gradient direction, each bin covers (360/b)°. In the ith 
region, the energy value in the corresponding energy map is added to the histogram bin 
to which the dominant orientation of the point belongs. Finally, the histograms of all 
overlapping regions are connected as a high-dimensional feature vector, that is, HLDO 
features 

LDOFH for feature extraction
Feature extraction plays an important role in exploring data by mapping the input data 
onto a space which reflects the inherent structure of the original data. In the mapped 
space, distinctive features are extracted from source data to represent the source data. 
In general, feature extraction is always considered as the preprocessing step which offers 
distinctive features for the following learning. An efficient feature-extracted method is 
proposed as followes.

The dominant orientation map and the energy map

The original image I(x, y) is smooth filtered with a Gaussian kernel function G(x, y, σ) to 
eliminate the noise. The processed image is defined as L(x, y, σ)—σ is the width param-
eter of Gaussian function. The gradient amplitude m(x, y) and the gradient direction θ(x, 
y) of each point are calculated from Eqs. (8) and (9), respectively:

We define the angle θ(x, y) (gradient direction) as the dominant orientation of the 
pixel, and the amplitude m(x, y) of the gradient is defined as the corresponding energy 
value of the point. Thus, one can get the orientation map and the corresponding energy 
map through this operation covering the whole image.

Constructing dense histogram as the extracted feature

In this part, the dense histogram is constructed to describe the spatial information and 
the local structure of the image in the same way adopted in D-HLDO. After getting the 
dominant orientation map and the corresponding energy map, we partition the dominant 
orientation map into a series of overlapping rectangular regions R1 . . .RL, where L is the 
number of divided regions. We build a 1D dominant orientation histogram on each region: 

The height of the histogram in the ith bin is obtained by accumulating the weights, 
that is, the corresponding energy values dominant orientation of which belongs to the 
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same bin. Finally, the histograms of all overlapping regions are connected as a high-
dimensional feature vector, that is, LDOFH features: 

Obtaining the low‑dimensional feature

The dimension of the histogram features extracted from the above method is very high 
because some redundant information is introduced, while rich structural features are 
obtained. This section introduces a LM-NNDA method to obtain a more efficient low-
dimensional feature with more discriminative ability.

First, the PCA method (Wen et  al. 2016) is used to reduce the data dimension. We 
can obtain the transformation matrix U of the data, and the reduced data are defined as 
follows:

After getting the low-dimensional data through PCA, LM-NNDA is adopted to make 
the data more distinguished. It seeks to find a projection axis such that the Fisher crite-
rion (i.e., the ratio of the between-class scatter to the within-class scatter) is maximized 
after the projection of samples. The local within-class scatter and the local between-class 
scatter matrices SLW  and SLb are defined by

 respectively, where Xi,j is the jth training sample in class i, c is the number of classes, M 
is the number of total samples, and mt

i,j =
∑R

r Xt,r is the local mean vector of Xi,j in class 
t. There are R-nearest neighbors of Xi,j in class t. We calculate the generalized eigenvec-
tors ϕ1 . . . ϕd which have d largest eigenvalues of SLbX = �SLwX, and P = (ϕ1 . . . ϕd) is the 
transform axes. We can use the linear transformation y = PT x to obtain the reduced 
d-dimensional feature vectors.

At last, we choose the nearest-neighbor classifier to achieve the face recognition, and 
LDOFH uses the cosine distance.

The algorithm of LDOFH

The feature extraction using the algorithm of LDOFH could be achieved as follows:

Step 1.	� Calculate the gradient amplitude m(x, y) and the gradient direction θ(x, y) of 
each pixel using Eqs. (8) and (9);

Step 2.	� Divide the dominant orientation map and the corresponding relative energy 
map into a series of overlapping local regions;

Step 3.	� Construct the histogram on each local region;
Step 4.	� Concatenate the histograms of all overlapping local regions to obtain the 

total histogram; and
Step 5.	� Reduce the dimension of the total histogram by LM-NNDA to get the final 

features.
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Merits of LDOFH

First, LDOFH calculates the local dominant orientation of each pixel over local patches 
to obtain the structure information of the image. The information can describe the 
local shape feature of the image well. Second, the change in light has little effect on the 
LDOFH recognition performance, because the change in light causes weak change in 
the dominant orientation over a local region. Third, the LDOFH is much faster than 
D-HLDO, because D-HLDO uses SVD to obtain the dominant orientation and energy 
value of each pixel, but this operation consumes more time. The following experiments 
show that our proposed LDOFH method is nearly three times faster than D-HLDO 
method. Given that the image resolution is w × h, the time complexities of Step 1, Step 
2, Step 3, Step 4, Step 5 are O(w × h), O(1), O(w × h), O(1), O((b × L)3), respectively. 
Therefore, the total time complexity of our LDOFH is O((b × L)3).

Experiments
In this section, we will evaluate the effectiveness of LDOFH and compare it with the 
D-HLDO algorithm on two large available face image databases (AR, IMM). There are 
three parameters in our method: the number of orientation bins (here we set bin = 9) over 
0–180°, Gaussian smoothing parameter σ (σ = 0.3), block size bsize (we construct histo-
gram on a bsize block). Here, we compare the results including face recognition rate and 
cost time in different bsize values and the number of training samples. The experiment is 
done on DELL computer (CPU i5-3470, 3.20 GHZ, 8G, win 64) with matlab 2016a.

Experiment on AR database

The AR face database (Martinez and Benavente 1998) contains over 4000 color face 
images of 126 persons (70 men and 56 women), including frontal views of faces with 
different facial expressions, lighting conditions, and occlusions. The pictures of 120 
individuals (65 men and 55 women) were taken in two sessions (separated by 2 weeks), 
and each session contains 13 color images. Fourteen face images (each session contains 
seven) of these 120 individuals are selected and used in our experiment. The size of each 
image is normalized to a 50 * 40. The sample is as shown in Fig. 2.

In order to obtain a better recognition rate, we set σ 0.3 and assume that the number 
of training samples in each class is 8, and then change the block size from 2 * 2 to 10 * 10; 

Fig. 2  Sample images for one person of AR database
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the experimental results are shown in Fig. 3. We can see that when the bsize is set to 8, 
the result is the best.

Next we compare LDOFH method with the related method D-HLDO. First, we com-
pare the LDOFH method and the D-HLDO method in respect of the recognition rates 
and the cost times when changing the number of training samples in each class from 2 to 
12, and the experimental results are, respectively, shown in Figs. 4 and 5.

To further demonstrate advantages of our method, we compare the performances of 
LDOFH, D-HLDO, LBP, LTP, PCA, and FLDA. We can see that our method LDOFH 
outperforms LBP and D-HLDO methods. Compared with LBP, it significantly captures 
the dominant orientation in the local patch and reveals the local statistical informa-
tion. Meanwhile, it consumes less time than D_HLDO and LBP. They both illustrate the 
effectiveness of the LDOFH method. The recognition rates of each method are listed in 
Table 1. Table 1 shows that our proposed LDOFH obtains the top recognition rate. The 
time cost results are shown in Table 2. Table 2 shows that our proposed LDOFH is much 
faster than D-HLDO method.

2 4 6 8 10
0.97

0.971
0.972
0.973
0.974
0.975
0.976
0.977
0.978
0.979
0.98

0.981
0.982
0.983
0.984
0.985
0.986
0.987
0.988
0.989
0.99

bsize - recognition rate

bsize

re
co

gn
iti

on
 ra

te

Fig. 3  The influence of parameter bsize on the recognition rate

2 3 4 5 6 7 8 9 10 11 12
0.75
0.76
0.77
0.78
0.79
0.8

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

train number

re
co

gn
iti

on
 ra

te

train number - recognition rate

D-HLDO
LDOFH

Fig. 4  The recognition rates in D-HLDO and LDOFH methods



Page 8 of 10Cui et al. Appl Inform  (2017) 4:14 

Experiment on IMM database

IMM is a database consisting of 240 annotated monocular images of 40 different human 
faces. Points of correspondence are placed on each image so the dataset can be readily 
used for building statistical models of shape.

The parameter is the same as the parameter set on the AR database. The results of 
recognition rate and cost time on IMM database are shown, respectively, in Figs. 6 and 7.

It can be seen from the above experimental results that on the IMM database, LDOFH 
has lower recognition rate than D-HLDO under the same conditions. However, the cost 
time of the D-HLDO method is nearly three times greater than the cost time found from 
the LDOFH method.

Integrating the results from the two databases, the LDOFH method is shown to be 
more effective than the D-HLDO method.

Conclusions and future works
In our work, a novel image feature-extraction method—local dominant orientation fea-
ture histograms (LDOFH)—is proposed. LDOFH obtains the dominant orientation and 
the relative energy value of each pixel by calculating the gradient direction and the gra-
dient amplitude in a local patch around the pixel. The feature histogram is constructed 

2 3 4 5 6 7 8 9 10 11 12
20

40

60

80

100

120

140

train number

co
st

 ti
m

e

train number - cost time

D-HLDO
LDOFH

Fig. 5  The cost times in LDOFH and D-HLDO method

Table 1  The recognition rates (%) of PCA, FLDA, LBP, LTP, D-HLDO, and LDOFH with the NN 
classifier on the AR database

Italic value indicates the best results

PCA FLDA LBP LTP D-HLDO LDOFH

Recognition rate 0.833 0.976 0.953 0.964 0.978 0.986

Table 2  The time cost results of LBP, D-HLDO, and LDOFH on the AR database

Italic value indicates the best results

LBP D-HLDO LDOFH

Time cost(s) 77.254 121.432 51.410
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by accumulating the relative energies of the dominant orientations in the rectangular 
region. All the histograms are concatenated into a high-dimensional feature vector. LM-
NNDA is finally adopted to reduce the dimension of the feature to obtain the more dis-
criminative feature. LDOFH is compared with the D-HLDO method on two different 
image databases, AR and IMM. The results demonstrate the effectiveness of the pre-
sented method.

In the future, we will find an algorithm to achieve feature fusion to improve the recog-
nition rate of the proposed method.
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