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Introduction
The knapsack problems, which have been intensively studied since the pioneering work 
of Dantzig (1957), have played an important role in industry, financial management, and 
so on. What is more, various integer programming problems can be relaxed to the knap-
sack problems. Therefore, the computing of the knapsack problems has been becoming 
the mark level of the computation in integer problems. To tackle this problem, many 
new contributions have been made in the following literature. A heuristic based upon 
genetic algorithms has been developed for multidimensional knapsack problem in paper 
(Chu and Beasley 1998). Based on the harmony search method, a new binary-coded 
version of harmony search (Kong et al. 2015) is presented to solve large-scale multidi-
mensional knapsack problem. In this proposed algorithm, attention is paid to the prob-
ability distribution rather than the exact value of each decision variable, and the concept 
of mean harmony is developed in the memory consideration. Inspired by region par-
tition of items, an effective hybrid algorithm based on greedy degree and expectation 
efficiency is constructed in the paper (Lv et al. 2016). Combining advanced features both 
from the path relinking method and the responsive threshold search algorithm, the first 
evolutionary path relinking approach is introduced in paper (Chen et al. 2016) for solv-
ing the quadratic multiple knapsack problem approximately.
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In this paper, the distributed Dang and Ye’s fixed-point iterative method (Dang and 
Ye 2015) is implemented to solve large-scale knapsack feasibility problem. This fixed-
pointed algorithm has been extended to airline disruption problem and other problems. 
The idea of solving multiple fleet airline disruption problems using a distributed compu-
tation approach to integer programming has been developed in the previous work (Wu 
et al. 2017a). The paper (Wu et al. 2017b) uses the Dang and Ye’s iterative fixed-point 
method for integer programming to generate feasible flight routes which are used to 
construct an aircraft reassignment in response to the grounding of one aircraft. Some 
computing of Nash equilibria methods are derived from this Dang and Ye’s algorithm, 
such as the method from the papers (Wu et  al. 2014, 2015). Some other engineering 
problems (Zhang et al. 2015, 2016) can also use this fixed -point method to solve. The 
Dang and Ye’s fixed-pointed method can be explained as follows.

Let P = {x ∈ Rn|Ax + Gw ≤ b, for some w ∈ Rp}, where A ∈ Rm × n is an m × n inte-
ger matrix with n ≥ 2, G ∈ Rm × p an m × p matrix, and b a vector of Rm.

Let xmax = (xmax
1 , xmax

2 , . . . , xmax
n )T with xmax

j = maxx∈Pxj , j = 1, 2, . . . , n 
and xmin = (xmin

1 , xmin
2 , . . . , xmin

n )T with xmin
j = minx∈Pxj , j = 1, 2, . . . , n. Let 

D(P) =
{

x ∈ Zn|xl ≤ x ≤ xu
}

, where xl = ⌊xmin⌋ and xu = ⌊xmax⌋. For z ∈ Rn and 
k ∈ N0, let P(z, k) = {x ∈ P|xi = zi, 1 ≤ i ≤ k , and xi ≤ zi, k + 1 ≤ i ≤ n}.

Given an integer point y ∈ D(P) with y1 > xli , Dang and Ye (2015) developed a fixed-
point iterative algorithm which is presented in Fig. 1.

In Dang and Ye’s algorithm for integer problem, a definition of an increasing mapping, 
which is from a finite lattice into itself, is developed. Any integer point, which is outside 
the P, is mapped into the first point in P that is smaller than them in the lexicographical 
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Fig. 1 Flow diagram of the iterative method
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order of xl . All the integer points, which are inside the polytope, are the fixed points 
through this increasing mapping. Given an initial integer point, the method either 
proves there is no such point by a limited number of iterations or generates an integer 
point in the polytope. For more proofs and details about this iterative algorithm, one 
can consult the paper (Dang and Ye 2015). An appeal feature of this fixed-point iterative 
method, which will be used in this paper, is that it can be easily implemented in a distrib-
uted way.

The rest of the paper is organized as follows. Some details of transformation of the 
knapsack feasibility problem into a polytope judgement problem, which is based on a 
LLL basis reduction, will be presented in “Transformation of the knapsack feasibil-
ity problem into apolytope judgement problem” section. The computation details and 
numerical results will be given in “Distributed computation and numerical results” sec-
tion. Some conclusions and future work will be discussed in the last “Conclusions and 
future work” section.

Transformation of the knapsack feasibility problem into a polytope judgement 
problem
In order to analyze the knapsack feasibility problem easily, this problem is defined as fol-
lows (Dantzig 1957).

Definition 1 Find a 0–1 integer solution of pTx = d, where p = (p1, p2, ..., pn+1)
T > 0 

and pi �= pj for all i �= j

After analysis, one can see this knapsack problem is one special example of the 
market split problem. To convert this problem into an equivalent problem of deter-
mining whether there is an integer point in a full-dimensional polytope given by 
P = {x ∈ Rn|Ax ≤ b}, we can apply the LLL basis reduction algorithm (Khorramizadeh 
2012) which has been described in paper (Wu et al. 2013).

Therefore, this knapsack feasibility problem can be formulated equivalently as follows:
Does there exist a vector

The solving of the Definition 1 can be transformed to judge whether there exists an inte-
ger point in the polytope (1). The distributed iterative algorithm, developed by Dang 
and Ye (2015), has a good performance to judge whether the polytope (1) has an integer 
point or not.

Distributed computation and numerical results
One master computer combined with several slave computers is equipped to implement 
the distributed computation. The master computer takes charge of solving the solution 
space of the polytope, dividing the solution space to segments, sending the segments 
to the slave computers, receiving the computation result from the slave computers, and 
exporting the computation result. Each slave computer receives the segment, judges 
whether there exits an integer point in its segment using Dang and Ye’s fixed-point 

(1)� ∈ Zn−m
s.t. − xd ≤ X0� ≤ e

(n−m)× 1 − xd .
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iterative method, and sends its result to the master computer. The outline of the distrib-
uted computation process in this paper is illustrated in Fig. 2 

In present study, the distributed computation system consists of three computers 
which are OptiPlex 330 with two processors. The programs are written in C++ lan-
guage. Subsegments which are distributed by the master computer are mutually inde-
pendent. Therefore, subsegments can be solved simultaneously. Luc Lapointe (1994) has 
been adopted to establish a communication network among the computers. The other 
settings and parameters are taken the same as the research (Wu et al. 2013). Message 
Passing Interface (MPI) is a tool to establish a stable communication network between 
the master computer and the slave computers in the distributed computation. The pseu-
docode of building the distributed network by MPI is described in Fig. 3.

In the following case study, two methods have been employed to solve the same exam-
ple, respectively. One is distributed fixed-point method, while the other is the branch 
and cut method (Padberg and Rinaldi 1991) which is a classical algorithm for integer 
programming. The numerical results are shown in the following Table 1. For simplifica-
tion, some symbols are defined as follows.

NumLPs:  The number of iterations for a certain algorithm
BC:  The branch and cut method

From Table 1, we can see that the distributed algorithm is superior to the branch and 
cut method regarding the number of iterations.

Fig. 2 Flow diagram of the distributed computation process
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Conclusions and future work
In this paper, a new method has been used to solve the knapsack feasibility problem. This 
method is divided into two steps. In the first step, the knapsack feasibility problem is 
transformed into a polytope judgement problem based on a LLL basis reduction. In the 
other step, a distributed fixed-point method for integer programming is implemented 
to solve the polytope judgement problem. Compared with the branch and cut method 

Fig. 3 Distributed computation pseudocode

Table 1 Two method to solve the knapsack feasibility problems

Prob. Dimension n The method BC

NumLPs F NumLPs F

1 1000 1011 Feasible 1428 Feasible

2 1000 1035 Feasible 2023 Feasible

3 1000 1002 Feasible 1360 Feasible

4 1000 1003 Feasible 1117 Feasible

5 1000 1005 Feasible 1122 Feasible

6 1000 999 Infeasible 1315 Infeasible

7 1000 1002 Feasible 978 Feasible

8 1000 1007 Feasible 1486 Feasible

9 1000 1065 Feasible 2017 Feasible

10 1000 1016 Feasible 2587 Feasible

11 1000 1014 Feasible 879 Feasible

12 1000 1012 Feasible 724 Feasible
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which is considered to be the best algorithm for the problem of this kind, numerical 
results show that this distributed fixed-point method is promising.

However, the dimension of instances is low and the number of slave computers in the 
numerical experiment is only three. The potential ability of this method has not been 
fully expressed. In the next step, these two shortcomings will be settled. With large num-
ber of slave computers, one can be confident to believe that the numerical results will be 
more better. Additionally, the distributed method is easy to be extended to solving other 
problems.
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