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Background
Recent renaissance of artificial intelligence is basically marked by four types of major 
advances. First, deep learning and big data achieved high accuracy on recognising pat-
terns, especially human faces and speeches in a huge population. Second, IBM Watson 
system demonstrated promising capabilities of natural language processing, hypothesis 
generation, and deep evidence scoring, with successes on conversation system, health-
care decision support, contact centre, financial and government services (Ferrucci et al. 
2010, 2013). Third, AlphaGo by DeepMind impacted the world firstly by its 4-1 victory 
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against legendary player Mr. Lee Sedol (Silver et al. 2016) and subsequently by its evolu-
tion into AlphaGoZero several months ago that was learnt to perform Go-game simply 
via self-play, starting from completely random play (Silver et al. 2017). The last but not 
least, astonishing developments of humanoid robots from ASIMO by HONDA in 2000 
to the recent version Atlas by Boston Dynamics, and Sophia by Hanson.

The last three types could be regarded as exemplars of brain-like bi-directional system 
featured with two complementary subsystems in harmony, while the first one (i.e. deep 
learning) acts as one key exemplar of inbound subsystem that performs mapping from 
an external visible domain into an invisible inner domain. The other subsystem performs 
outbound mapping from invisible inner domain back to the visible observation domain. 
Recalling Chinese ancient Ying–Yang philosophy and following Bayesian Ying–Yang 
learning proposed firstly in 1995 (Xu 1995, 1996), as illustrated in Fig. 1a, one subsystem 
is named Ying machine that consists of an outbound mapping as Ying passage and the 
invisible domain as Ying domain, while the other subsystem is named Yang machine that 
consists of an inbound mapping as Yang passage and the visible domain as Yang domain.

Mathematically, the Yang domain X accommodates a set x0, x1, . . . , xt of input data 
with each xt in a task-dependent data type, and the Ying domain R = {Y ,�} accommo-
dates the inner representations of external world, consisting of long-term memory � that 
accommodates model parameters, and short-term memory Y that accommodates the 
inner representation y0, y1, . . . , yt of x0, x1, . . . , xt . Perceiving, recognising, and cognising 
via Abstraction, Yang passage X → R involves various tasks related words with an ini-
tial character “A”, thus also named A-type mapping. Then, thinking process is conducted 
in the Ying domain and outcomes selected representation {Y ,�} to reversely drive Ying 
passage R → X that implements various tasks, as illustrated in Fig. 1b, roughly classi-
fied into four categories: (1) identity mapping that calibrates whether input can be well 
reconstructed; (2) interacting with outside (informing, illustrating, communicating etc.); 
(3) implementing, motoring, instructing, intending; and (4) imagining and creating.

Specifically, it is noted that short-term memory and long-term memory are far from 
being simply represented by two sets {Y ,�} in the Ying domain. Elements of both Y 
and � are actually represented in different data types and accommodated in certain 
procedural and hierarchical structures. In this paper, for example, short-term memory 
involves an inner state process s0, s1, . . . , st not only in labels that indicates a trajectory 

Fig. 1  Bayesian Ying–Yang learning proposed firstly in 1995 a Bayesian Ying–Yang system. b Tasks by 
Yang passage and Ying passage. “Ying” is spelled “Yin” in the current Chinese Pin Yin system that could be 
backtracked to over 400 years from the initiatives by M. Ricci and N. Trigault. But, the length of ‘Yin’ lost its 
harmony with Yang, thus “Ying’ is preferred since 1995 (Xu 1995). Further details are referred to a section 
named a modern perspective on Ying–Yang and WuXing in Ref. Xu (2010)
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of concept flow towards goals, but also associated with a flow of attributes {y0, y1, . . . , yt} 
that describe the concepts and instigate not only an action flow a0, a1, . . . , at to  control 
state transition but also drive the other categories of outcomes. Moreover, s0, s1, . . . , st is 
closely coupled with value process v0, v1, . . . , vt that evaluates the prospect of each state 
towards goals.

Formulated with help of probability theory, the Ying machine and Yang machine 
describe the joint distribution of R, X by two kinds of decomposition q = q(R)q(X |R) and 
p = p(X)p(R|X) , respectively. The best harmony learning theory argues that the inner 
activities R as well as the corresponding X → R and R → X , including updating (or called 
learning) parameters, are managed by a principle called Ying–Yang harmony maximisa-
tion1 that maximizes H(p||q)+H(q||p) , which is in short also referred to as BYY har-
mony or IA harmony. From H(p||q)+H(q||p) = −KL(p||q)− KL(q||p)− E(p)− E(q) , 
we see an interpretation that Ying and Yang seek a best agreement via minimising 
KL(p||q)+ KL(q||p) in a vitality or parsimony system via minimising E(p)+ E(q).

This paper addresses further possible developments of such brain-like bi-directional 
systems, with a key nature that deep implementing (or I-type mapping) and deep 
abstracting (or A-type mapping) in harmony, shortly deep IA harmony or deep Ying–
Yang harmony. Examining AlphaGoZero together with revisiting early studies on A* 
search, it is interestingly found that MCTS (one key ingredient of AlphaGoZero) actu-
ally shares a scouting technique with CNneim-A that was proposed in 1986. Integrating 
the strengths of AlphaGoZero and CNneim-A, a new method named deep IA-search 
is proposed, including Deep Scout A* (DSA), Deep CNneim-A (DCA), Deep Bi-Scout 
A* (DBA), and V-AlphaGoZero, as well as their extensions DSA-E, DCA-E, DBA-E, and 
AlphaGoZero-E.

Considering relation between search and reasoning, we are further motivated to 
implement reasoning with help of deep IA-search, referred to as Deep IA-Infer. Particu-
larly, casual reasoning are addressed. Another early study (Xu 1986a; Xu and Pearl 1987) 
on structuring causal tree is developed into a three-phase causal learning approach, 
namely topology identification, parameter reestimation, and causal ρ-tree search on 
a casual ρ-diagram that is defined by a set of pairwise correlation coefficient ρ . Also, 
implementing procedures are further sketched for this TPC causal learning of triplets, 
stars, and trees, as well as some topologies of casual ρ-Directed Acyclic Graph (DAG), 
e.g. the ones for Yule–Simpson’s paradox, Pearl’s Sprinkler DAG, and back door DAG.

Moreover, the classic Boolean SAT problem is extended into one ρ-SAT problem, and 
the roles of four fundamental mechanisms in an intelligent system are elaborated with 
insights on integrating these mechanisms to encode not only variables but also how they 
are organised, from which we can interpret why deep networks are preferred while extra 
depth is unnecessary, and  also adopt causal tree or hierarchical SEM equations as an 
alternative to deep learning.

1  See H(p||q) =
∫
lnQdP =

∫
p ln qdµ , KL(p||q) =

∫
ln

P
Q
dP =

∫
p ln

p
q
dµ , and E(p) = −

∫
ln

dP
dµ

dP.
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Tree search and algorithm A*

Problem solving tasks are typically implemented in a large number d of steps. At each 
step, there are a number b of branches among which we select one to implement, as 
illustrated in Fig. 2a. The whole procedure is a tree search that starts from the root to 
a leaf node labeled as a goal G that satisfies a pre-specified condition. Traditionally, 
there are two classic algorithms for tree search, namely the width-first-search (WFS) 
and the depth-first-search (DFS), both of which have complexity of the order O(bd) 
not only in the worst sense but also in the average sense.

A snapshot of tree search is illustrated in Fig.  2b, which is featured by a red col-
oured boundary drawn in a dashed closure that divides the tree into two parts. One 
is the inner part of tree, consisting of nodes inside the closure with each node already 
expanded and put into a list called CLOSED. The other is the peripheral part of tree, 
consisting of nodes outside the closure with each node put into a list called OPEN 
in which all the nodes are expandable but not expanded yet. Made step by step, each 
step of tree search is expanding one node in OPEN, featured by two jobs. One is usu-
ally named Expansion that is an action of putting the node SE that is selected to be 
expanded next into CLOSE and all its child nodes into OPEN. The crucial point is 
that each node in either OPEN or CLOSED is associated with one or more attributes 
to indicate the value of this node. That is, each node should be evaluated before put-
ting into OPEN, for which an appropriate measure is needed and effectively valued as 
accurately as possible. The other job is named Selection that chooses one node from 
OPEN as SE . The crucial point is that it is based on a strategy that integrates informa-
tion not only from different attributes of each node but also from different nodes in 
OPEN.

Fig. 2  Tree search, Monte-Carlo tree search, and scouting. a Tree search. b A snapshot of tree search. c DFS–
BFS (shortly DBFS) combination. d MCTS implementation: tree policy (upper row) and default policy (lower 
row). e Scouts are sent to collect information before corps make a choice at a junction



Page 5 of 38Xu ﻿Appl Inform  (2018) 5:5 

The simplest case is encountered in WFS and DFS, the value measure is simply an 
integer ℓ as an attribute to indicate the depth that this node locates at, and the selection 
strategy is the biggest ℓ for DFS and the smallest ℓ for WFS, respectively. However, this 
attribute does not directly reflect how good the corresponding node is. Usually, another 
number f is added as an attribute. The corresponding selection strategy is choosing from 
OPEN the node with its associated f value being the best among those with all the other 
nodes in OPEN, e.g. made in those best-first-search (BFS) methods (Xu et al. 1988).

One most popular and classic exemplar of BFS is A* search (Hart et  al. 1968; Pearl 
1984). As illustrated in Fig. 3b, its selection strategy is selecting sE to expand as follows:

Fig. 3  Monte-Carlo tree search, CNneim-A search, Bi-Scout A*, and extensions. a A snapshot after circling 
four steps of MCTS for certain times. b A snapshot after running A* for a while. c A snapshot after running 
CNneim-A for a while. d A snapshot after running Bi-Scout A* for a while. e Deep learning network for 
estimating value and policy. f A spectrum of selection strategies by combining A* and MCTS. g Backward and 
forward revision of f values in OPEN. h The lost function is minimised for learning parameters θ
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where g(s) is known and represents the actual cost from the root to the node s, while 
h(s) is unknown and supposed to be the optimal cost from s to the goal G. If h(s) could 
be known, the above sE would be the best choice and locates on the minimum cost path 
from the root to the goal G, which would be easily reached by merely d steps. However, 
h(s) is estimated heuristically (thus named heuristics), which could be poor. Still, the 
complexity for A* to find the minimum cost path is typically of the order O(bd).

There are also examples that combine the uses of the attributes ℓ and f. DFS seeks 
nodes with the biggest ℓ and quickly goes through a path from the root to a leaf, where 
the actual cost g∗ becomes known and then used as a bound to prune off those branches 
with its current g(s) > g∗ . Typical examples are alpha–beta pruning for minimax search 
(Hart and Edwards 1961) and branch-and-bound technique in many algorithms (Land 
and Doig 1960). Another example is a combination of DFS and BFS. When DFS tries to 
pick up nodes with the biggest ℓ , it will encounter more than one nodes associated with 
the biggest ℓ and simply pick one randomly. Instead, we may use BFS to select the best 
node according to f value among a subset OPENs∗ ⊂ OPEN , where nodes in OPENs∗ 
associate with the same biggest ℓ and share the same father s∗ , resulting in a search 
path as illustrated in Fig. 2c. In sequel, we will see that such a combination of DFS–BFS 
(shortly DBFS) leads to different search strategies by different combining ways and spe-
cific formulae for f, covering the ones in Q-learning and in MCTS.

Q‑learning and reinforcement learning

Considering selection of the best node among OPENs∗ by f given in Eq. (1), we notice 
that g(s) = r(s∗, s)+ g(s∗),∀s ∈ OPENs∗ , where r(s∗, s) is an incremental cost or regret 
locally from s∗ → s , and g(s∗) is constant to every s ∈ OPENs∗ . Thus, we can modify Eq. 
(1) into

where Q(s∗, s) represents an estimation of the value from s∗ via s to the goal. Setting 
h(s) = 0 , Eq. (2) degenerates into a greedy search. This local search is modified by h(s) 
that estimates a cost from a long term prospect, either improved by a good estimate or 
deteriorated by a poor estimate.

Known as one most popular reinforcement learning method (Sutton and Barto 1998), 
Q-learning (Watkins and Dayan 1992) considers the following action policy:

where Q(s∗, a) represents an estimation of the expected return (reward) associated with 
taking action a at state s∗ . Typically, action a at state s∗ leads to one of the child nodes 
of s∗ , that is, a(s∗) = s ∈ OPENs∗ . In other words, Eqs. (3) and (2) are conceptually the 
same and act as an example of the previously discussed DBFS search, resulting in a 
Markov decision process that performs a node-to-node search among OPENs∗ without 

(1)sE = arg min
s∈OPEN

f (s), f (s) = g(s)+ h(s).

(2)sE = arg min
s∈OPENs∗

Q(s∗, s), Q(s∗, s) = r(s∗, s)+ h(s),

(3)at = arg max
a

Q(s∗, a),
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memory, and thus is inferior to the search performed by A* in which memory takes role 
by searching among OPEN.

On the other hand, Q-learning is preferred to A* in that it enhances a winning associa-
tion pair { s∗ , a} by updating

where rt is the reward received by making action a at s∗ and corresponds to r(s∗, s) in Eq. 
(2), while v(s) = maxa Q(s, a) corresponds to h(s) in Eq. (2) though it is here discounted 
by a factor 0 < γ < 1 . The difference from either Eqs. (2) or (1) is that a temporal pro-
cess is considered here because one physical state s∗ may be temporally revisited, and 
thus Q(s∗, a) or Q(s∗, s) is actually a weighted average of its last estimate and a time vary-
ing instantaneous estimate rt + γ v(s).

One should not be confused with the notation Q in Eq. (2), where it is used as cost 
or regret associated with a strategy for cost minimisation and the notation Q in Eq. (3), 
where it is used as reward associated with a strategy of reward maximisation. Actually, 
considering either of two directions to optimise, i.e. {cost, min} and {reward, max}, has 
no fundamental difference and is interchangeable. In sequel, we use Q and also f in Eq. 
(1) as well without a particular clarification unless it may cause confusion. Also, we use 
vh(s) to indicate that either v(s) is considered in reward maximisation or the subscript 
h(s) is considered in cost minimisation.

Instead of the winner-take-all action policy by Eq. (3), a generic formulation is the fol-
lowing probabilistic policy:

which is sought via optimisation mainly in two ways. One estimates vh(s) by alternat-
ing value iteration and policy iteration, e.g. Eq. (4) is a combined and simplified version. 
The other is called direct policy search, e.g. deep learning used in AlphaGo (Silver et al. 
2016) and AlphaGoZero (Silver et al. 2017). Represented in parametric model pθ (a|s) , 
the problem becomes learning θ and is usually handled by a gradient-based search (Sut-
ton et al. 2000).

There are also efforts that apply traditional Monte-Carlo technique to estimate Q(s, a) 
(Sutton and Barto 1998), still suffering the inferiority of node-to-node search. It is com-
pletely different from and should not be confused with Monte-Carlo tree search below.

Monte‑Carlo tree search versus CNneim‑A search

Monte-Carlo tree search (MCTS) has received remarkable interest due to its spectacular 
success in computer games (Kocsis and Szepesv 2006; Browne et al. 2012), especially the 
unbelievable result that AlphaGo impacted the world firstly by its 4-1 victory against Mr. 
Lee Sedol (Silver et al. 2016).

MCTS methods are featured by circling four steps as illustrated in Fig. 2d for a pre-
fixed large number of times. Instead of giving a conventional introduction, here we pro-
vide an alternative insight in a comparison with A* search and together with a further 
development named CNneim-A.

Illustrated in Fig. 3a is a snapshot after circling four steps for certain times, and illus-
trated in Fig. 3b is a snapshot after running A* for expanding certain number of nodes. 

(4)Qt+1(s
∗, a) = (1− η)Qt(s

∗, a)+ η[rt + γ v(s)], for a step size η > 0,

(5)p(a|s) = Probability(taking action a | at state s),
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Being different from A* that chooses the best node from OPEN according to its associ-
ated f value, MCTS starts a new circle at the step of selection as illustrated in Fig. 3a for 
picking one node sE from OPEN to be expanded next. Search is implemented from the 
root of tree T in a way similar to DBFS but with f value replaced by Q(s, a), yielding a 
path that hits one node sE in OPEN. This node is expanded in the step of expansion with 
all its child nodes put into OPEN, and each child node is valued by the step of simula-
tion that runs a default policy to make a fast search, which in the simplest case is to make 
uniform random moves, until reaching a terminal node that receives a reward value � 
directly from environment. Then, this � is delivered up along the path in the step of back 
propagation not only to sE for updating its v value but also further back to the tree root 
with Q value on each of its edges updated by Eq. (4), which affects DBFS in the selection 
step of the next circling.

After a pre-fixed number of circling, the frequency πi of passing an edge from the root 
is calculated and used as a probabilistic policy by Eq. (5) to guide a move from s to one of 
its children, as illustrated in Fig. 2c. One crucial difference between A* and MCTS is that 
the search by A* is made as illustrated in Fig. 3b) without calculation of πi while MCTS 
moves as illustrated in Fig. 2c based on πi that comes from scouting made in Fig. 3a.

Actually, scouting is a strategy that is widely encountered in real life. For example, as 
illustrated in Fig. 2e, when corps meet a junction, scouts are sent to collect information 
before making a choice. The strength of MCTS comes from such a scout for comput-
ing each πi . There is a similar scout made in Algorithm CNneim-A that was proposed 
more than 30 years ago (Xu 1986a; Xu et al. 1987). As illustrated in Fig. 3c, each subtree 
of the root s is scouted with a pre-fixed number ni nodes expanded by A*, obtaining the 
average µi of the f values associated with those expanded nodes to take place of the f 
value associated with each child i of the root s . Then, a move is made from s to its child 
according to the best of {µi} , as illustrated in Fig. 2c.

Apparently, selection by {µi} is different from one by {πi} , but not really. Considering 
a simple case that there is only one goal G within subtree i from the root s, we randomly 
assign each node located on the path from s → G by 1 with probability πi and 0 with 
probability 1− πi , while all the other nodes are assigned by 1 with a much smaller prob-
ability e and 0 with a probability 1− e . Also, we turn min-selection into max-selection 
and consider simply DFS by Eq. (3) with tie breaking uniformly. We may roughly observe 
that µi tends πi as long as ni is large, and thus the moving policy π may be regarded as 
merely an extreme case. It may explain why AlphaGoZero needs a temperature param-
eter τ to adjust (Silver et al. 2017). Containing more information, µi already takes such 
an adjustment in consideration.

Some issues about computing complexity

The idea of scouting subtrees was first appeared in an algorithm named SA* (Zhang 
and Zhang 1985). Though SA* and CNneim-A share a common point of scouting sub-
trees to collect more information to aid expanding, CNneim-A differs from SA* crit-
ically. CNneim-A simply considers the sample mean of f values on a possible optimal 
path scouted by A* in this subtree, justified by the fact that f values on the optimal path 
should be identical and thus can be regarded as coming from a same distribution.
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In contrast, SA* focuses on Pearl’s simplified search space (Pearl 1984; Zhang and 
Zhang 1985). It is a uniform m-ary tree with one root node and a unique goal node at 
depth N, where each edge simply has a unit cost 1 and thus we have g(s) = d for a node 
s at depth d. For a node s in the subtree rooted at the i-th node on the optimal path 
away from tree’s root, we observe h∗(s) = N − d if s is on the optimal path but other-
wise h∗(s) = N + d − 2i . What SA* considers is the statistic a(s) = 0.5[d − N + h(s)]/d 
based on which SPRT test is made to examine whether the population of such a(s) values 
in a subtree under inspection is significantly different from the population of a(s) values 
in a subtree that contains the optimal path (Zhang and Zhang 1985).

What can be obtained from such a scouting mechanism? There was a serious confu-
sion in the early theoretical study (Zhang and Zhang 1985). Its was surprisingly claimed 
in Zhang and Zhang (1985) that the mean complexity of order O(d ln d) was achieved 
by SA* search in the same space as Pearl’s simplified search space, contradicting to the 
well known fact that the mean complexity of A* search is an order growing exponentially 
with d (Pearl 1984). However, it follows from investigations in Xu (1986a, b, 1987) that 
this surprising claim unfortunately turned out to be a mistake, due to an incorrect and 
even contradictory theoretical formulation made in Zhang and Zhang (1985). In Pearl’s 
simplified search space, the fact is that a(s) values actually do not come from a same 
population, even in a subtree that contains the optimal path.

Nevertheless, the idea of scouting subtrees was newly proposed by that time, being 
different from those DFS aided lookahead techniques, e.g. alpha–beta pruning (Hart 
and Edwards 1961) and branch-and-bound (Land and Doig 1960). Sharing the idea of 
scouting subtrees but implementing selection policy instead of making SPRT test, it 
was shown by mathematical analysis (Xu 1986a; Xu et al. 1987) that CNneim-A gets the 
mean complexity of order O(d2) in general and even of order O(d ln d) under some con-
straint in a particularly assumed search space.

Though the search space considered in the above studies is very different from Pearl’s 
simplified search space, the above results do cast insights on those classic results about 
the mean complexity of A* search. The scouting-averaging technique used in CNneim-A 
can improve A* for two reasons (Xu 1986a; Xu et al. 1987). First, heuristics h becomes 
easier to estimate for those nodes locate deeper. Second, the variance of the average of a 
number of random variables is smaller than the variance of each individual random vari-
able, that is, averaging reduces inaccuracy.

Deep reinforcement learning and AlphaGo Zero

No doubt, deep learning (LeCun et al. 2015) and Monte-Carlo tree search (MCTS) (Koc-
sis and Szepesv 2006; Browne et al. 2012) are two most popular achievements for past 
decades or more in the AI field. Recently, integration of deep learning, reinforcement 
learning, and MCTS have outcome not only what called deep reinforcement learning 
(Mnih et al. 2015; Clark and Storkey 2015), but also AlphaGo (Silver et al. 2016). The 
key point is using deep network to model a mapping from state configuration s to value 
function vθ (s) and probabilistic policy pρ(a|s) , such that value and policy estimation are 
turned into deep learning tasks (Sutton et al. 2000), which enhances both valuing meas-
ure and selection strategy in MCTS, as in AlphaGo (Silver et al. 2016) and AlphaGoZero 
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(Silver et al. 2017). We focuses on AlphaGoZero since it is the latest and outperforms the 
former significantly.

AlphaGoZero makes a move from s to one of its children by using π as illustrated in 
Fig. 2c, while π is calculated from scouting by MCTS, as illustrated in Fig.  3a. A new 
circle starts at the step of selection, where Q(s, a) is not only computed by a simplified 
version of Eq. (4) with a special setting rt = 0, γ = 1 and with v = vh = vθ (s) by deep 
learning, but also combined with p(s, a) = pρ(a|s) by Eq. (5), resulting in Q(s, a) as 
follows:2

where N(s, a) accumulated the visit count of the edge (s, a) during expanding the present 
tree T by DBFS. The role of p(s,  a) is providing a priori probability for action s → a , 
which is discouraged by the number that this action was made. This part is further 
weighted by a pre-specified coefficient wq > 0 . Moreover, as illustrated in Fig. 3e, a deep 
network with many convolutional layers maps the current state s (i.e. the current configu-
ration of the chess board) into a pair {v,p} with v = vh = vθ (s) and p = p(s, a) = pρ(a|s).

Running over a pre-fixed number of circling, π is estimated by π ∝ N (s, a)1/τ , repre-
senting the frequency of passing each edge from the root s , where τ > 0 is a controlling 
temperature. Moreover, θ is updated by stochastic gradient learning to minimise a given 

(6)Q(s, a) = Q(s, a)+ wq(1+ N (s, a)−1p(s, a),

Table 1  Deep IA-search family

(A) Deep Scout A* 
(DSA)

Deep CNneim-A 
(DCA)

Deep Bi-Scout A* 
(DBA)

V-AlphaGoZero

Deep learning [vh , g](s) = f θ (s) [vh , p](s) = f θ (s)

Selection step Get expanding node 
SE by A*

In each child tree, get 
expanding node 
by A*

Get expanding node 
by A* subtree scout 
for µ , by A*

Get expanding node 
by DBFS

Valuating Equation (1)  
by f = g + h

Equation (1)  
by f = g + h

Equation (1)  
with µ replacing f

Q and p by Eq. (6)

Moving policy Frequency πi Mean µi Frequency πi Frequency πi

(B) DSA-E DCA-E DBA-E AlphaGoZero-E

Deep learning [vh , g, p]θ (s) = f θ (s)

Selection step Get expanding node SE by DBFS-n-A* selection

Bayesian valuation Make action either stochastically by value q or maxaqaupon posteriori 
q = [qa], qa = paea/p

T E , E = [ea]

TypeQ : ea = ρ(Q(s, sa)) or ea
= ρ(r + vh(sa), where sa = a(s)

TypeF : ea = ρ(µa),µ = [µa] TypeQ : ea = Q(s, a)

TypeF : ea = ρ(f (sa)), where sa = a(s) TypeF : ea = ρ(f (sa))

If qa is larger than a pre-specified threshold, put sa into OPEN, otherwise into WAIT. When 
OPEN becomes empty, move some ones from WAIT to OPEN. Note:  p(r) is monotoni-
cally increasing for reward maximisation or decreasing for cost minimisation

OPEN revision Revise f values in OPEN by back-forward propagation after each 
expanding

Others Same as DSA Same as DCA Same as DBA Same as AlphaGo-
Zero

2  This one was used in Ref. Silver et al. (2016) and is kept to be same conceptually in Ref. Silver et al. (2017), though 
an additional factor is multiplied to wq but may be absorbed into the notation of wq.
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loss function L, once the search guided by π and illustrated in Fig. 2c eventually reaches 
a game-over state with an indicator z received.

Method
Deep IA‑search family

With help of deep learning (DL) network for estimating [vh, g](s) = fθ (s) , we can extend 
A* search and CNneim-A into three DL-based tree search techniques summarised in 
Table 1(A), as variants or counterparts of AlphaGoZero.

The first is named Deep Scout A* or shortly DSA. We make A* search to expand a 
search tree T as illustrated in Fig.  3b as the counterpart of the MCTS tree shown in 
Fig. 3a. As tree expanding process satisfies certain preset condition (e.g. a fixed number 
of leaf nodes or depth, etc.), we count the number ni of nodes in the i-th child tree of the 
root s and make a move based on πi = ni/

∑
i ni as illustrated in Fig. 2c, in a way similar 

to AlphaGoZero but different in getting the tree by A* instead of MCTS.
The second is named Deep CNneim-A or shortly DCA. As illustrated in Fig. 3c, each 

child tree of the root s is scouted by A* by expanding a pre-specified number of nodes, 
obtaining the average µi of the f values on the longest path from s to a leaf. Then, a move 
is made from s to its child according to the best of {µi} instead of the best of {πi} used by 
AlphaGoZero, as illustrated in Fig. 2c.

The third is named Deep Bi-Scout A* or shortly DBA, which combines DSA and DCA, 
featured by two levels of scouting. The first level is similar to DSA, making a move based 
on πi in Fig. 2c. As illustrated in Fig. 3d, the second level is expanding the node SE based 
on the average of the f values on the longest path from SE to a leaf after a subtree is 
scouted by A* with a pre-fixed number nodes expanded, that is, this average is used in 
place of the original f value associated with the node SE to guide A* search on the first 
level.

Moreover, AlphaGoZero also gets a priori p = p(s, a) = p(a|s) by deep network and 
uses it in Eq. (6) to make action while there is no such a priori considered in these A* 
based techniques.

In Table 1(B), we further extend those techniques in Table 1(A) into DSA-E, DCA-E, 
DBA-E, and AlphaGoZero-E, featured by the following modifications:

(1)	 DL priori policy deep learning network [vh, g](s) = fθ (s) is extended into 
[vh, g ,p](s) = fθ (s) to add an output for a priori policy p = p(s, a) = p(a|s).

(2)	 Bayesian valuation combing such a priori policy and turning the estimates Q, f , vh 
into a sort of likelihood such that a posteriori q is obtained by Bayesian formulae, 
then making action based on this posteriori. It degenerates back to Table 1(A) when 
elements of p are same.

(3)	 OPEN beaming only a part of children of s are put into OPEN based on q with 
the rest into WAIT that is a preparatory list of storing these nodes, some of which 
will be moved back to OPEN once OPEN becomes empty. It degenerates back to 
Table 1(A) when all the children of s are put into OPEN.

(4)	 DBFSn-A* selection a spectrum of selection strategies can be obtained by combin-
ing the one from A* and the one from MCTS by varying n = 0 to n = d , where d is 
the length of the path from the root to SE hit by DBFS. As illustrated in Fig. 3f, one 
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end is DBFS0 -A that hits SE by MCTS without using A*. Generally, DBFSn-A* con-
ducts DBFS search to return back for n nodes along the path from SE back to the 
root. For examples, DBFS1-A* returns back to its father node, while A* or precisely 
BFS selects the best among all the children (i.e. ones indicated by double circle ) as 
SE ; DBFS2-A* returns back for two nodes, while BFS selects the best among all its 
children and grandchildren (i.e. add in two double circled nodes) as SE , so forth. 
The other end is DBFSd -A that returns back to the root and becomes equivalent to 
A* that picks the best among OPEN.

(5)	 OPEN revision A* search will not revise the f values in OPEN and thus do not affect 
future expanding, while AlphaGoZero or MCTS uses back propagation to revise 
Q values along the path from SE to the root of tree, which affects the search of the 
next circling to hit a node to expand. Also, we may integrate this idea to revise the 
f values in OPEN per expanding such that the next expanding will be affected. As 
illustrated in Fig. 3g, after expanding SE and getting the best value f* of children’s 
f values, we back-propagate f* to revise the f values of nodes one by one along its 
path pathb back to the root of tree, e.g. the f value of s0 is updated by a weighted 
average of its old value and f*, and then the f value of s1 is updated by a weighted 
average of its old value and the new f value of s0 . Precisely, we make a revision by 

 where 1 > η > 0 . On a backward path, the notation (sf , ss) is moved up after each 
step, until the f value of the tree root is revised. Similarly, on a forward path, the 
notation (sf , ss) is moved down after each step, from each node on pathb to reach a 
node in OPEN.

Particularly, DBA-E is an example of past-future integrated (PFI) mechanism that 
selects the node to expand by jointly using information within and outside the red 
coloured boundary drawn in Fig. 2b. ‘Future’ information outside the closure is col-
lected via one optimal scouting path by A* search and the average of f values along 
this path, while ‘past’ information inside the closure is collected via back propaga-
tion by MCTS. Generally, there could be different detailed forms of PFI mechanism, 
for which further study may deserve.

Each of search techniques in Table 1(B) degenerates back to its counterpart given 
in Table 1(A) when all the above modifications are shut off. Whether each of these 
modifications gets in action is task dependent, and correspondingly we may have 
various special cases in place of ones in Table  1(B). They all can be regarded as 
examples of deep bidirectional intelligence addressed at the beginning of this paper. 
Deep implementation of problem solving search is driven by deep abstraction or 
A-type mapping via deep learning network in harmony. These exemplars constitute 
a family that can be shortly named deep IA-search to indicate not only its nature of 
deep IA harmony but also its feature of making scouting aided search.

(7)
f new(sf ) = (1− η)f old(sf )+ ηf new(ss), on backward path

f new(ss) = (1− η)f old(ss)+ ηf new(sf ), on forward path,
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Deep learning, path consistency, and domain knowledge embedding

Similar to that made in AlphaGoZero (Silver et al. 2017), training DL network fθ (s) starts 
once search process finally reaches a terminate node. As illustrated in Fig. 2c, this search 
results in a PATH that consists of all the nodes selected step by step from the initial state 
to the terminate node. For each s ∈ PATH , the associated g∗(s), v∗h(s) are obtained from 
the environment, based on which we update the parameters θ to modify p(s), g(s), vh(s) 
by gradient descending to minimise the loss function:

with γ = 2 for the L2 error and γ = 1 for the L1 error, where ws , and wg are nonnegative 
weighting parameters.

Ignoring the reward in Eq. (4) or the regret in Eq. (2), we discard |g(s)− g∗(s)|γe and 
let wc = 0 , L(θ) returns back to the same loss function used in Ref. Silver et al. (2017). 
In general, the above L(θ) generalises along two directions. First, the reward or regret 
is considered such that it becomes applicable to problem solving tasks beyond games 
like Go, e.g. tasks traditionally considered by A*. Second, Lcs(θ) is added with wc > 0 to 
enhance a nature named as path consistency, that is, f values on one optimal path should 
be identical. Previously, OPEN revision by Eq. (7) is actually rooted from this nature. In 
sequel, we use this nature to improve learning.

To restrict that the values of f(s) predicted by DL network should deviate as less as pos-
sible on PATH, we may minimise the following loss function:

where f ∗(s) is a moving average of f values of states within a segment window 
Ws ⊆ PATH with s ∈ Ws , while the window width may vary as the state moves, e.g. it 
may grow gradually from 1 at the root to some value and then shrink gradually back to 1 
as the terminate node of the PATH.

Learning is performed in two phases. The main phase is updating θ to minimise the 
overall L(θ) after reaching a terminate node, where v∗h(s) = 0 such that f ∗(s) = g∗(s) 
becomes the actual reward or regret received from the environment. There is also a 
complementary phase made before reaching terminate node. We let ws = 0 to shut off 
Ls(θ) that is unavailable yet because the value vh of each node on this incomplete PATH 
is unknown. Still, we have fθ (s) given by DL network, together with f ∗(s) given by the 
average of such fθ (s),∀s ∈ Ws , based on which we may update θ to minimise a part of 
L(θ) to ensure path consistency.

The above proposal is directly applicable to those tasks that seek whether or not cer-
tain conditions are satisfied, e.g. Go game, Boolean satisfiability problem, and various 
constraint satisfaction problems. In these cases, each action s → a does not contribute 
the final result incrementally, and there is no additive nature f = g + vh . The situation is 
degenerated into g(s) = 0 and f (s) = vh(s) . Still, path consistency holds and it follows 
from Eqs. (8) and (9) that learning is made by minimising

(8)
L(θ) = |θ |γr +

∑

s∈PATH

[wsLs(θ)+ wcL
c
s(θ)],

Ls(θ) = −π(s) ln p(s)+ |g(s)− g∗(s)|γe + |vh(s)− v∗h(s)|
γe ,

(9)Lcs(θ) = |f (s)− f ∗(s)|γ ,
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where v∗h(s) is obtained by Eq. (9) with f replaced by vh and wc replaced by ws.
Additionally, there are also task-dependent constraints. One classic example is the 

travelling salesman problem (TSP) that not only finds a minimum path of passing a 
number of cities but also satisfies the constraint of visiting each city once and only once. 
Another example is considering a portfolio of assets, e.g. stocks, bonds, currencies, and 
metals, etc. Changing holding of one or more assets leads to a new state, incurring for 
profit gain or loss rt . Within a given period, the task of changing states for a best profit 
can be formulated as a tree search problem.

Typically, tasks of TSP and portfolio management as well as many problem solving 
problems are formulated in a representation that may facilitate conventional computing 
but is difficult for making deep learning network to distinguish different states because 
the representation is usually discrete, symbolic, and conceptual. One potential direc-
tion to tackle the problems is what we may call feature enrichment. Proceeding along 
an opposite direction of feature extraction or selection that compresses data, removes 
redundancy, and extracts important information, we enrich compressed or simplified 
representation by restoring topological information, neighbourhood information, and 
association information, etc. The enriched representation per state can be either or both 
of the following two formats:

A manifold in high dimensional space     Each state denotes a manifold, a convex set, 
and a cluster of points in a high dimensional space. Similar states correspond topo-
logically to neighboured manifolds or clusters.
A 2D or more image     Each state denotes a collection of images either varying con-
tinuously or sharing common critical features. Being different from the above vec-
tor representation, image representation is good at encoding dependent structure 
related to element locations.

Some possible examples are suggested as follows:

•	 For portfolio management, we turn time series of assets into to images, with the help 
of time–frequency analysis, such as short-time Fourier transform (STFT).

•	 For TSP problem, a typical representation of a state is a contour or trace from the 
starting city to the end city in a 2D image with locations of n cities. We may turn the 
2D contour by 3D time–frequency analysis, scale space representation, and wavelet 
analysis, etc.

•	 For natural language understanding, we associate words with its corresponding 
speech signals or image patterns, and then treat the signals and patterns as above to 
generate image inputs to deep learning networks. Also, we may embed each word or 
a parsing tree of a sentence into high dimensional space to generate vector input to 
deep learning networks.

(10)L(θ) = |θ |γ + ws

∑

s∈PATH

[|vh(s)− v∗h(s)|
γ − π(s) ln p(s)],
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Deep IA‑infer

A process of tree search such as AlphaGo may be regarded as a process that infers the 
statement “the skill of player A is higher than player B” is true, which is proved or dis-
proved at a terminal state of tree search. Though output is deterministically either of 
win, lost, and tie, the result has uncertainty since it comes from just one game. Uncer-
tainty may be reduced by playing a number of games. Also, the value v is attached to 
each state as a belief value against uncertainty. Finally, we can backtrack the path from 
the tree root to the terminal state, and get to know the reason of winning.

Generally, search process of solving Boolean satisfiability and other constraint satisfac-
tion problems may be regarded as uncertainty reasoning process of inferring a statement 
via checking whether certain conditions are satisfied.

During the last wave of AI studies in the eighties of the last century, tree search not 
only found many applications in the areas of pattern recognition (Xu et  al. 1989), but 
also took important roles in problem solving tasks, especially in the hot topic called 
expert system. Starting at a set of preconditions towards a set of ending conditions that 
specify a consequence, the reasoning process is actually a tree search, with each elemen-
tary unit being a star structure. Each state associates with a number of attributes that 
specify an antecedent, and several production rules that match this antecedent act as 
branches emitted from this state. After reaching the state that represents a targeted con-
sequence, a path backtracked to the tree root will provide a sequence of IF-THEN rules 
that explain the reasoning process.

Regrettably, studies on these tasks gradually faded out since the late eighties in the 
last century because implementation of tree search confronted great challenges in com-
puting complexity. Nowadays, AlphaGoZero and each of deep IA-search techniques in 
Table 1(B) as well as learning by Eq. (10) arise a new direction for rebooting these early 
studies, with the help of deep learning and recent advances on tree search.

The tree expanding process {st , yt , ht}, t = 1, . . . ,T  records a reasoning sequence, 
where yt consists of attributes associated with state st , each transition st → st+1 denotes 
an implementation of production rule with its antecedent best matching yt among 
several production rules and with its postcedent attached to st+1 as its attributes, and 
ht−1 → ht represents the corresponding change of uncertainty that the search is guar-
anteed to reach a targeted consequence. The matching between yt and the antecedent of 
each rule is usually inexact and will increase uncertainty. There is a sequence of actions 
a1, a2, . . . , at that controls tree expanding process in order to maintain low uncertainty. 
In such a way, reasoning is implemented with the help of techniques of deep IA-search, 
which is here referred to as Deep IA-Infer.

The star structure illustrated either in Fig. 4b or by the shadowed area in Fig. 4a takes 
a fundamental role in tree search or tree reasoning. Typically, each star structure (i.e. a 
number of edges emitted from the state) is pre-specified according to domain-depend-
ent knowledge, and also possible to be identified from data in some cases. Then, certain 
quantities, such as pρ(a|s) , Q(s, a), and p(st+1|st) , are learned from data collected either 
in advance or during search.

In general, there are two types of star structure. As illustrated by the shadowed area in 
Fig. 4a, each link of the first type acts as a ‘perceptor’ or ‘controller’ that perceives and 
maps the current state information into one of actions. Such actions can be regarded as 
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an example of abstract representation such as decision index, features, and control sig-
nal, and thus may be named as A-type link. Each link of the second type acts as an ‘actu-
ator’ that is driven by the selected action to implement certain mechanism that moves 
the state st to the next st+1 , and thus may be named as I-type link.

Both types usually contain randomness and uncertainty and, thus, are modelled by 
probabilities p(a|st) and p(st+1|a) , respectively. Collapsing A-type links and I-type links 
between a state to its direct descendant states, the situation illustrated in Fig. 4a will be 
simplified to the star structure illustrated in Fig. 4b. However, such a collapsing degrades 
the representation ability except the special case shown in Fig. 4c, such as ones consid-
ered by AlphaGoZero and deep IA-search.

Casual analysis: model‑based versus data‑based approaches

When we say that changing x causes y changing, we observe the natures as follows:

Dependence we observe dependence between changes of x and y.
Directional  x changes before y changes for at least an infinitesimal interval.
De-interference changes of y are caused by neither itself or its environment.

Also, either or both of x and y is not limited to be a scalar, but possibly a vector or a set 
of variables.

Fig. 4  Deep IA-infer and casual analysis. a Star topology of state-action-state transition. b Star topology of 
state-state transition. c Action that goes to only one state. d Three variables in conditional independence (CI) 
topology (in a shadowed box), which is shared by one causal topology of T1 tree with its root invisible, and 
three different causal topologies of T2 tree with its root visible, where Tℓ to denote a type of trees with its total 
depth being ℓ . e Add a new visible variable and examine a new triplet. f CI ρ-tree and multivariate high order 
equations
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The above three 3-D natures jointly tell that the changes of y are indeed caused by x 
at least partially, in a general scope but a weak sense. We may observe a stronger cau-
sality in a more restricted scope that y changes with x in a regular manner, e.g. satisfy-
ing certain dynamic law or following a particular mechanism, which actually leads to 
one current popular direction of casual analysis on nonexperimental data, featured with 
model-based approach. That is, we attempt to fit nonexperimental data by a model that 
generates y from x in a manner usually regarded as causal, e.g. possessing at least the 
above three natures, and interpreting according to the model that there is a causality 
underlying the data observed. Typically, the topology of such a model is a Directed Acy-
clic Graph (DAG). Examples include not only Bayesian networks (Pearl 1988). Examples 
include not only the classical structure equation model (SEM) (Wright 1921; Pearl 2010), 
but also LiNGAM (Shimizu 2006), post-nonlinear (PNL) model (Zhang and Hyvärinen 
2009), and additive noise model (ANM) (Hoyer et al. 2009).

This direction of studies has two critical problems. The first is how to judge whether 
data fit the model well. A conventional fitting error or likelihood may not be enough. A 
small fitting error may be obtained in a risk of undermining or violating causality. The 
second is how to judge whether a model describes causality well. There lacks a numeric 
measure yet. Instead, one typically checks whether some restrictions are satisfied. Cur-
rent ways that tackle the two problems are estimating two or a few candidate models to 
minimise error and then picking one via checking which one satisfies restrictions well.

Yet, there is still a distance towards a best solution from the perspectives of both minimis-
ing description error and ensuring causality, for which we need to seek a causal orientated fit-
ting error measure. Such a measure should cover not only the conventional fitting error but 
also deviation from causality. The latter is about deviation from the DAG topology that mod-
els causality, related to not only the complexity of DAG but also whether the casual direction 
is consistent to the corresponding directions of the DAG topology. Therefore, a reasonable 
guess about such a measure is somewhat a kind of directional generalisation error.

Actually, the model-based approaches represent just one category of a dichotomy of 
casual analysis. The other category is data based approach, discovering causality under-
lying data without assuming a data generative model but with efforts that ensure the 
3-D natures. One example is Rubin causal model (RCM) (Rubin 1974; Rubin and John 
2011). The key idea is intervening the change of designated action, e.g. typically chang-
ing between two states usually denoted by the case x = 1 and the control x = 0 , and then 
observing whether the corresponding effect of y ensures the first two natures, while the 
nature of de-interference is considered by weighted adjustment via the conditional inde-
pendence (CI) x ⊥ y | u on a covariate that describes the environment u or its propen-
sity score that represents sufficient dimension reduction.

Another example came even much early. Considering that x and y share one com-
mon factor u with x ⊥ y | u , it follows from Ref. Reichenbach (1956) that the causality 
is described by either of three casual tree topologies that share a common CI topology 
x − u− y . First, x ← u → y is a simple tree of type T1 with its root being hidden and 
two leaf nodes located on the first layer, where for simplicity we use Tℓ to denote a type 
of trees with its total depth being ℓ . Either of the latter two x → u → y and x ← u ← y 
is a simplest tree of type T2 with its root being visible and each of two layers having only 
one node.
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Using one CI testing, we are able to recover the CI topology but unable to determine 
which one among the three causal topologies, i.e. we are unable to orientate the direc-
tion of each edge. Such a CI test-based study applies to generally the cases with many 
variables too. The best known examples are the inductive causation (IC) algorithm (Pearl 
1991) and its refined counterpart named PC algorithm (Spirtes and Glymour 1991). The 
latter starts with a completely connected graph and deletes recursively edges based on 
CI tests, resulting in the CI topology. Next, nondirectional edges of every V-structure 
are turned into directional edges. However, merely a part of edges can be orientated in 
such a way. The rest edges still remain non-directional. One way is orientating each edge 
a direction randomly in consistence with conditional independence.

Generally speaking, CI nature can recover CI topology but is unable to orientate every 
edge direction. We may use an approach similar to RCM for the direction of each of 
un-orientated edge. Also, techniques used in the above-mentioned LiNGAM, PNL, and 
ANM as well as the SADA (Cai et al. 2013) may also be adopted for this purpose.

Discovering star structure and TPC causal learning

The CI topology obtained above consists of merely visible variables, which is not enough 
in real situations where certain hidden factors need to be taken in consideration. One 
early study is made by Pearl (1986) on the problem of binary visible nodes together with 
a number of binary hidden variables.

One example is identifying whether p(x1, x2, x3) is in a star structure as follows:

as illustrated within the shadowed box in Fig. 4d. It is found that a necessary condition 
for identifying CI topology is simply that correlation coefficients ρji between xj , xj obey 
the following triangle inequalities:

Subsequently, the study was extended to Gaussian visible nodes x1, x2, x3 in Refs. Xu 
(1986a); Xu and Pearl (1987), in which it was found that the necessary and sufficient 
condition for identifying this CI topology is satisfying the above triangular inequalities.

Actually, Eq. (12) came from Eqs. (14) and (15) in Ref. Xu and Pearl (1987), i.e. the fol-
lowing property about pairwise correlation coefficients (or shortly ρ-parameters)

which describes the constraints on two kinds of ρ-parameters located on each side of the 
equality. The kind on the left hand is attached to a visible edge and directly known from 
observation data, while the other kind on the right hand is attached to an invisible edge 
and actually acts as one unknown parameter in the star structure, i.e. the causal model 
we consider.

Both Eqs. (12) and  (13) apply to not only the triplet by Eq. (11) but also generally a star 
topology with more than three visible nodes as follows:

(11)p(x1, x2, x3|w) = p(x1|w)p(x2|w)p(x3|w),

(12)ρjk ≥ ρjiρik , with ρjkρikρji ≥ 0, ∀ i �= j �= k.

(13)ρji = ρiwρjw , ∀i, j and ρ2
iw ≤ 1, ∀i,

(14)p(x1, x2, . . . , xn|w) = p(x1|w)p(x2|w) · · · p(xn|w).
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In a summary, we have the following theorem:

Theorem 1  To identify the star topology by Eq. (14), the satisfaction of the triangular 
inequalities by Eq. (12) or equivalently the equalities by Eq. (13) is (a) the necessary con-
dition for random variables x1, x2, . . . , xn in general, and (b) the necessary and sufficient 
condition for Gaussian variables x1, x2, . . . , xn in particular.

Even when the theorem is satisfied, it should be noted that there are still two types 
of indeterminacy. First, though the satisfaction of Eq. (13) uniquely specifies the star 
topology, this topology is shared by an equivalence class that consists of not only one 
causal topology of T1 tree with its root hidden but also three different causal topolo-
gies of T2 tree with its root visible, as illustrated in Fig. 4d. Second, the solution for 
the triplet (ρ12, ρ13, ρ32) to satisfy Eq. (13) is not unique but may be infinite many.

Typically, identifying star or CI topology and estimating unknown parameters are 
handled non-separately (Spearman 1904; Wright 1921; Anderson and Rubin 1956; 
Pearl 1986; Pearl 2010; Shimizu 2006; Zhang and Hyvärinen 2009; Hoyer et al. 2009). 
Differently, the above theorem implies a possibility of separating topology identifica-
tion and parameter estimation. Taking the issue of equivalence class in consideration 
too, we get a three phase  causal learning approach as summarised in Table 2.

The first phase identifies the CI topology, or shortly T-phase. Simply, a star topology 
may be identified in two ways. One is model free based on Eq. (12), involving merely 
estimating ρij ’s from samples. However, for a finite number of samples, the resulted 
ρij ’s suffer from randomness and inaccuracy. Certain results about distribution func-
tion of correlation coefficient are available in the existing literature, based on which 
we may further consider Eq. (12) probabilistically as follows:

with a small e > 0 as a tolerance threshold.
The other way is based on a start causal model with a set ρ of n unknown param-

eters ρiw’s, from which we obtain Eq. (13) that consists of 0.5n(n− 1) joint equations. 

(15)P(ρjk ≥ ρjiρik) > 1− e, ∀ i �= j �= k .

Table 2  TPC causal learning

Solving joint equations for CI ρ-tree by Theorem 2 and for CI ρ-DAG by Theorems 3 and 4

Joint equations Topology identification 
(T-phase)

Parameter reestimation 
(P-phase)

Causal ρ-tree search (C-phase)

No solution Inconsistent with data NA NA

Unique solution As the necessary and 
sufficient condition for 
identifying this CI topology 
of ρ-tree or ρ-DAG, which 
is an equivalence class of 
a number of causal ρ-trees 
or ρ-DAGs. At least, one of 
them models data well

Each in this equivalence 
class is modeled in SEM 
equations with coefficients 
as parameters that are 
re-estimated via iterating 
one SEM-based constrained 
sparse optimisation with 
coefficients get in T-phase 
as initialisation

Search the best one among 
the equivalence class with 
each one enumerated by a 
search strategy, estimated 
in P-phase, and evaluated 
by a measure that considers 
both best-fit and causal-
ity to get a directional 
generalisation error.

Many or infinite 
many solu-
tions

As a necessary condition that 
this CI topology satisfies
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As summarised in Table 2, we examine the possible outcomes of the joint equations to 
identify the start causality. The best outcome is that the joint equations have a unique 
solution, which identifies that the casual tree topology in consideration is among an 
equivalence class of four simple causal ρ-trees as illustrated in Fig.  4d, but fails to 
identify uniquely which one.

Alternatively, we may let ξij = − ln |ρji| and turn Eq. (13) into

which consists of 0.5n(n− 1) joint linear equations of n nonnegative unknown variables. 
After getting an estimate of ξiw , we may get |ρiw| = exp(−ξiw) and then recover the signs 
from Eq. (13).

The second phase is named P-phase that estimates ρ of all the unknown ρ-parameters 
by

for a given casual tree topology taken from the equivalence class. Specifically, we may 
use SEM equations to model the casual tree topology, with coefficients as parameters 
that are re-estimated via iterating a constrained sparse optimisation with coefficients get 
in T-phase as initialisation.

When the joint equations from this casual tree topology get many or infinite many 
solutions in T-phase, it only partially supports that this casual tree topology is among 
the equivalence class. Still, we may approximately perform P-phase to model this casual 
tree topology. To reduce this indeterminacy and also inaccuracy caused by a finite num-
ber of samples, certain structural constraint and sparse regularisation can be imposed.

The third phase is named C-phase that aims at choosing the best one among the equiv-
alence class, for which we need a search strategy to enumerate among the equivalence 
class and also a measure to evaluate both best-fit and causality to get a directional gener-
alisation error.

In a summary, the separation principle that was firstly revealed in Refs. Xu (1986a); Xu 
and Pearl (1987) has been here further developed into a method of making three phase 
learning, namely T-phase, P-phase, and C-phase, or shortly TPC causal learning.

Structuring causal trees: TRIPLET, STAR, and their recursions

We address further implementations by starting with the triplet of three visible nodes 
x1, x2, x3 . Without losing generality, we normalise each xi to be zero mean and unit vari-
ance, and also assume that w has zero mean and unit variance. From Theorem 1(c) or 
Eqs. (9) and (10) in Ref. Xu and Pearl (1987), it follows that Eq. (13) is associated with the 
following linear regression or the structure equation model (SEM):

(16)ξij = ξiw + ξjw , ∀i, j and ξiw ≥ 0, ∀i,

(17)p(x1, x2, . . . , xn) =

∫
p(x1, x2, . . . , xn,w)dw,

(18)

For T1 : [x1, x2, x3]
T = [ρ1w , ρ2w , ρ3w]

Tw + [e1w , ew2, e3w]
T , Eeiww = 0, ∀i,

For T 1
2 : [x2, x3]

T = [ρ2w , ρ3w]
Tρ1wx1 + [ρ2wew1 + e2w , ρ3wew1 + e3w]

T ,

For T 2
2 : [x1, x3]

T = [ρ1w , ρ3w]
Tρ2wx2 + [ρ1wew2 + e1w , ρ3wew2 + e3w]

T ,

For T 3
2 : [x1, x2]

T = [ρ1w , ρ2w]
Tρ3wx3 + [ρ1wew3 + e1w , ρ2wew3 + e2w]

T ,
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where the 1st line equation is straightforward to understand. In order to under-
stand the last three lines, we need to add one equation w = ρiwxi + ewi , with its vari-
ance of ewi being 1− ρ2

iw . Example the last line equation comes from x1 = ρw1w + e1w , 
x2 = ρ2ww + e2w with w = ρ3wx3 + ew3 , which produces x1 = ρ1wρ3wx3 + ρw1ew3 + e1w 
and x2 = ρ2wρ3wx3 + ρ2wew3 + e2w . The variance of ρw1ew3 + e1w is 
ρ2
w1(1− ρ2

w3)+ 1− ρ2
w1 = 1− ρ2

w1ρ
2
w3 and ρw2ew3 + e2w is 1− ρ2

w2ρ
2
w3.

In the general case that x = [x1, x2, . . . , xn]
T  and thus ew = [e1w , e2w , . . . , enw]

T  , we 
have one causal topology of T1 tree with its root being the hidden variable w, and n 
different causal topologies of Ti

2, i = 1, . . . , n trees with its root being the visible vari-
able xi , respectively. We may summarise the equations in Eq. (18) into

where diag[dℓ] denotes a diagonal matrix with dℓ being its ℓ-th element. Moreover, x−i 
comes from taking xi out of x and correspondingly we have ew−i , ρ

w
−i . Also, there is an 

additional equation w = ρiwxi + ewi for the cases of Ti
2.

Given a set of samples of x , we may use the weighted least square error method on 
either of the equations for T1 and the equations for Ti

2 to get a lost function −L(ρ,T ) 
for measuring how well the causal tree topology T and the corresponding SEM equa-
tions fit samples. Moreover, let all eiw ’s and ewj ’s as well as w to be Gaussian with zero 
means and mutually uncorrelated, we may estimate distribution p(x) and p(x−i|xi) 
and get a likelihood function L(ρ,T ) to measure how well the model T fits. Then, ρ is 
estimated by the following constrained optimisation:

We choose the best ρ∗ in the best model T ∗ among all the candidates. The above second 
term adds in regularisation with a strength γ > 0 , with q = 1 or 2 for L1 and L2 regu-
larisation, respectively. This regularisation prefers simplicity, i.e. ρ2

iw or |ρiw| is as smaller 
as possible. Interestingly, this simplicity is equivalent to independence because ρiw = 0 
either implies independence of Gaussian variables xi,w or acts as a necessary condition 
for independence of variables xi,w in general.

In sequel, we sketch a TRIPLET procedure for possible real applications:

Step 1    Select a set V of significant variables, where each x ∈ V  is selected from 
the set U of all the variables if x is regarded as “significant” by either a hypothesis 
testing or according to a criterion. One example is that each x ∈ V  is a significant 
SNV selected from U that consists of all the SNVs in a GWAS study. The other 
example is that each x ∈ V  is a significant biomarkers selected from U that con-
sists of expressions of all the genes in genomics analyses.
Step 2      For every x ∈ V  , we screen every triplet (x, y, z) by enumerating every 
pair (y, z) from the difference set U − V  . This triplet is ignored if it is already in 

(19)

For T1 :x = ρww + ew , Ew = 0, Eeww = 0, Eew = 0,

ρ
w = [ρ1w , . . . , ρnw]

T , Eewe
T
w = diag[1− ρ2

ℓw],

For T i
2 :x−i = ρ

w
−iρiwxi + ρ

w
−iewi + ew−i, x−i = x − {xi},

E[ρw
−iewi + ew−i][ρ

w
−iewi + ew−i]

T = diag[1− ρ2
ℓwρ

2
iw].

(20)max
ρ,T

{L(ρ,T )− γ
∑

i

|ρiw|
q}, T ∈ {T1,T

i
2, i = 1, . . . , n} subject to Eq. (13).
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the set Td that accommodates all the detected triplets, otherwise, u is examined 
by either one inequality test based on Eqs. (12) and (15) or one equality test based 
on Eqs. (13) and (16), and then it is added into Td if the test is passed.
Step 3    For each triplet (x, y, z) ∈ Td , we solve Eq. (20) and choose the best ρ∗ in 
the best model among the four candidates.

This TRIPLET procedure finds a set of triplets and puts in Td.
We further extend a known triplet a− xyz into star structure with more than three 

edges. Putting a triplet (x, y, z) into S, we implement a STAR procedure as follows:

•	 Pick away from U − S a visible variable u that has the strongest correlation with 
either one of variables in S, and then perform T-phase to examine a star that con-
sists of u and all the variables in S by either an inequality test based on Eqs. (12) 
and (15) or an equality test based on Eqs. (13) and (16).

•	 If the test fails, discard u. If success, put u into S and choose candidate causal trees 
by choosing a → u or  u → a to avoid a V-structure.

•	 Make P-phase to solve Eq. (20) and choose the best ρ∗ in the best model among 
the candidates obtained above.

•	 Examine whether a pre-specified terminating condition is satisfied, if yes, stop; 
otherwise, goto the beginning line above.

One terminating condition can be simply that the number of elements in S becomes 
larger than a threshold. The other is that every variable in U − S gets a weak correla-
tion with every variable in S.

Moreover, we may further extend a triplet topology into a general causal tree struc-
ture by recursively performing the following RECURSIVE TRIPLET:

Step 1 As illustrated in Fig. 4e, we choose one edge laz on a known triplet a-xyz 
and consider to locate at the middle of laz an additional edge lbu that has one end 
being a new hidden variable b and the other end being a new visible variable u. We 
thus get a new triplet b-zua.
Step 2 Make T-phase to test this new triplet b-zua in the same way as Step 2 in the 
above TRIPLET procedure. If failed, lbu is discarded.
Step 3 If succeed, perform P-phase by Eq. (20) on the triplet b-zua and choose the 
best ρ∗ in the best model T ∗ among the four candidates.

Next, we choose another new edge and repeat the same procedure, . . . , so on so forth, 
until all the visible nodes of not only the original triplet a− xyz but also all the newly 
added visible nodes have been examined.

Specifically, there are different choices to pick which visible variable as u and pick 
which edge as laz . For the former one, we may pick a visible variable that has the 
strongest correlation with the visible end (i.e. z) of edge laz . For the latter one, we may 
assign each edge in the current tree an ordering index (e.g. it can be the time that the 



Page 23 of 38Xu ﻿Appl Inform  (2018) 5:5 

edge is added, and the oldest is picked first). Alternatively, we may also modify Step 3 
into the following two steps:

Step 3(a)    if succeed, solve Eq. (20) on the triplet b-zua and choose the best ρ∗ in the 
best model among the four candidates. Also, record the corresponding best fitting 
measure L∗az
Step 3(b)    repeat from Step 1 to Step 3 on the other two edges lay and lax , respec-
tively. Choose the best ξ∗ according to L∗aξ for ξ = x, y, z and finally add the edge lbu 
to the middle of the corresponding edge laξ∗.

RECURSIVE TRIPLET and the above revision suffer a problem that results in a tree with 
hidden nodes increasing proportionally with the number of visible nodes. One remedy 
is letting the visible node u of the edge lbu to be one of three visible nodes in a detected 
triplet. In such a way, two triplets are joined if we get at least one successful test on the 
new triplet b-zua in Step 3. Also, it is not difficult to observe that such a joining proce-
dure will not violate the tests already made on two previous detected triplets. Next, we 
choose another triplet and repeat the same procedure, ..., so on so forth, until all the 
detected triplets have been all examined.

Alternatively, we may also locate the hidden centre of a triplet at the middle point of 
edge laz . In such a way, the middle point actually forms a star topology of five edges. Even 
more, we may locate the hidden centre of a star with more edges at the middle point or 
merge the hidden centres of two triplets or stars to form a bigger star. Then, we can 
check this star by either an inequality test based on Eqs. (12) and (15) or an equality test 
based on Eqs. (13) and (16). If the test is passed, we solve Eq. (20) and choose the best ρ∗ 
in the best model among all the candidates. So on and so forth, ..., we add a visible node, 
a triplet, and a star into the current tree until all the visible nodes have been examined.

CI ρ‑diagram and casual ρ‑tree discovery

In some real applications, a possible topology of a causal tree may come from domain 
knowledge. Also, we may be asked to compare causal topologies resulted from using 
different existing methods for causal analyses. Thus, it is also demanded to further 
examine whether a given topology is a CI diagram that defines an equivalence class of 
a number of causal trees. Beyond tree topology,   a CI ρ-diagram  is a Directed Acyclic 
Graph (DAG) or Bayesian networks, on which extensive studies have been made (Pearl 
1988, 2010; Spirtes and Glymour 1993, Spirtes et al. 2000).

Illustrated in Fig. 4f, we consider a diagram with visible nodes x1, x2, . . . , xn and hid-
den nodes w1, . . . ,wm , in which again not only each xi is normalised to be zero mean 
and unit variance but also each wj is assumed to be zero mean and unit variance too. In 
this diagram, each edge is associated with the correlation coefficient ρ between its two 
nodes. Such a diagram is completely defined by a set of pairwise correlation coefficient 
ρ , shortly called ρ-diagram.

Since independence implies decorrelation (i.e. an edge can be removed if its associated 
correlation coefficient ρ = 0 ), a CI diagram must be a CI ρ-diagram. On the other hand, two 
variables x1, x2 may not be independent even there is no correlation between x1, x2 , because 
there may still be higher order dependence between them, i.e. a conditional decorrelation 
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(CD) ρ-diagram may not be a CI diagram. For simplicity, we still use the name CI ρ-diagram 
in a narrow sense that the diagram is a CI-diagram while we consider each edge merely by 
its associated correlation coefficient ρ . That is, we consider a restricted form of CI-diagram, 
namely CI ρ-diagram.

In sequel, we start at a special case that the diagram is a tree, namely CI ρ-tree, on which 
we may extend Eq. (13) into the following theorem:

Theorem  2  Given a conditional independence (CI) undirected ρ-tree topology, con-
sidering a pair of nodes ξ , η by a undirected path ξ − x1 − · · · − xm − η and add-
ing an additional edge between ξ , η associated with ρξη to form in a loop, we have 
ρξη = ρξx1ρx1x2 · · · ρxm−1xmρxmη.

Based on this theorem, we obtain high order equations by considering every pair of vis-
ible nodes. For the example in Fig. 4f with n = 7 visible nodes and k = 10 edges, there are 
21 equations with 10 unknown variables as follows:

As a result, examining the satisfaction of Eq. (13) is turned into examining whether this 
Eq. (21) is solvable, for which what summarised in Table 2 still applies. Again, getting a 

(21)

ρx1x2 = ρx1w1ρx2w1

ρx1x5 = ρx1w1ρw1w2ρw2w3ρw3x5

ρx1x4 = ρx1w1ρw1w2ρw2w3ρw3x4

ρx1x7 = ρx1w1ρw1w2ρw2w4ρw4x7

· · · · · ·

7× 6× 0.5 equations

subject to: all the − 1 < ρ ′s < 1.

Fig. 5  Discovering casual ρ-DAG. a A cofounding DAG. b Pearl’s Sprinkler DAG. c Pearl’s Back door DAG. d 
One CI ρ-tree that shares the topology of Fig. 4f
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unique solution in T-phase identifies that the CI undirected ρ-tree in consideration is 
indeed among an equivalence class.

Let ξ = − ln |ρ| , it follows from Eq. (21) that we further have

We recover their signs of ρ ′s by putting them into Eq. (21). Therefore, examining the 
satisfaction of Eq. (13) can also be turned into examining whether Eq. (22) is solvable 
and the signs of its solutions are recovered.

Also, Eq. (22) can be further turned into solving the following linear programming:

Given a undirected CI ρ-tree topology identified, we may further seek directed casual ρ
-tree topologies, e.g. as illustrated in Fig. 5. One road is using IC algorithm (Pearl 1991) 
and PC algorithm (Spirtes and Glymour 1991). The other road is directly identifying 
whether a given directed causal ρ-tree with help of the following Theorem 3.

As illustrated in Fig. 5a–c, a pair of nodes ξ , η is said to be directionally correlated if 
the pair is linked by a path in pattern ←← · · · ←j→→ · · · → , where j can locate at ξ 
or η as well as any middle point.

Theorem 3  Given a directed ρ-tree topology, considering a pair of nodes ξ , η that are 
directionally correlated by a path ξ ← x1 ← · · · ← xj → · · · → xm → η, we have 
ρξη = ρξx1ρx1x2 · · · ρxj−1xjρxjxj+1 · · · ρxm−1xmρxmη.

Based on this theorem, we can perform T-phase to check whether a given directed 
ρ-tree topology is consistent with a given set of samples from visible nodes. Follow-
ing the procedure similar to turning causal star topologies into Eqs. (18) and (19), 
we turn each directed casual ρ-tree into its corresponding SEM equations, based 
on which we perform P-phase to solve the best ρ∗ for performing the optimisation 
by Eq. (20). Based on these SEM equations, we may infer the first-order statistics of 
variables, subject to errors propagated along the paths within tree, e.g. the previous 
ρ2wew1 + e2w , ρ3wew1 + e3w for the cases in Fig. 4d.

The information flows in a directed ρ-tree topology as illustrated in Fig.  5b are 
diverging from tree’s root or hidden nodes to the visible nodes, thus, it may be 
called diverging causal tree. Obviously, it is a generative model or Ying causal model, 
implementing an I-type mapping. Revising the direction of every edge, the topology 

(22)

ξx1x2 = ξx1w1 + ξx2w1

ξx1x5 = ξx1w1 + ξw1w2 + ξw2w3 + ξw3x5

ξx1x4 = ξx1w1 + ξw1w2 + ξw2w3 + ξw3x4

· · · · · ·

subject to : all the ξ ′s > 0.

(23)

max
∑

all the ξ ′s, subject to

ξx1x2 = ξx1w1 + ξx2w1

ξx1x5 = ξx1w1 + ξw1w2 + ξw2w3 + ξw3x5

ξx1x4 = ξx1w1 + ξw1w2 + ξw2w3 + ξw3x4

· · · · · · .
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becomes one that may be named converging causal tree, as illustrated in Fig.  5a, in 
which the information flows are converging from the visible nodes to the tree’s root. 
Also, it is called representative model or Yang causal model, implementing an A-type 
mapping. Strictly speaking, such a converging causal tree is a Directed Acyclic Graph 
(DAG) but no longer a directed tree, for which Theorem 3 does not apply.

In comparison with structuring causal tree incrementally by TRIPLET, STAR, and 
their recursions, the above casual ρ-tree approach balances estimations of param-
eters ρ in a systematic manner. Yet, there lacks an effective technique for perform-
ing C-phase and especially for enumerating all the candidate causal ρ-tree topologies. 
Still, it is useful to practical needs of not only examining one or more topologies 
obtained from domain knowledge but also comparing causal topologies resulted from 
different existing methods.

Casual ρ‑DAG discovery: Yule–Simpson Paradox, SPRINKLER, and BACK‑DOOR

We proceed from casual ρ-tree to a general formulation of causal analysis on a CI 
ρ-diagram or CI ρ-DAG, with each directed edge featured by a linear SEM equa-
tion. We start with one simplest case as illustrated in Fig. 5a, which is also the simple 
causal topology of the well-known Yule–Simpson Paradox (Pearl 2010), described by 
the following SEM equations:

Being different from a tree, there are at least one node v with its indegree deg−(v) being 
bigger that 2, e.g. deg−(y) = 2 . The output of such a node is the summation of the inputs 
vui , i = 1, . . . , deg−(v) along all the edges evui , i = 1, . . . , deg−(v) that enters this node, 
that is, we have

In Fig. 5a, we simply have y = yz + yx.
Without losing generality, we again normalise variables to zero means and unit variances. 

It follows from Eq. (24) that Ezy = Ez(yz + yx) = ρyzEz
2 + ρyxρzxEz

2 = ρyz + ρyxρzx . In 
other words, the simple product in Theorem  2 is here extended into a summation of 
products, or shortly the PROD format is extended into a SUM-PROD format.

Treating Exy, Ezx in a way similar to Ezy, we have

It should be noted that the notation in the left hand explicitly uses a superscript ’ o ’ to 
denote the correlation coefficient ρo

ξη = Eξη between two observable variables ξ , η . We 
have ρo

ξη = Eξη = ρξη if deg−(ξ) = 1, deg−(η) = 1 , and thus both notations are inter-
changeable, as did previously in this paper. Such an interchangeability no longer holds 
here, a notation with a superscript ’ o ’ denotes a correlation coefficient computed from 
two observable variables, while a notation without such a superscript denotes a param-
eter in the causal model we consider.

(24)x = ρzxz + ezx, y = yz + yx, yz = ρyzz + eyz , yx = ρyxx + eyx.

(25)v =

deg−(v)∑

i=1

vui .

(26)ρo
zy = Ezy = ρyz + ρyxρzx, ρ

o
xy = Exy = ρyx + ρyzρzx, ρ

o
xz = ρzx.
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In Eq. (26), we may obtain ρo
zy, ρ

o
xy, ρ

o
xz from experimental observation data, and then 

examine whether there is a confounding causal topology illustrated in Fig. 5a by examin-
ing the following corrected counterparts:

It follows from −1 < ρyz , ρyx < 1 we should further check the following inequalities:

which provides an interesting insight on the Yule–Simpson’s Paradox (Pearl  2010).
Case–control studies can be widely found in various practical uses, especially in com-

putational health and bioinformatics. The purpose is observing whether changing x 
causes y changing, while most of practices actually observe certain association between 
x,  y without considering whether confounding factors exist in the environment, via 
hypothesis test directly or indirectly based on estimating ρo

yx . The above Eqs. (27) and 
(28) provide a PDC method for reexamining such studies:

Projection    pick a suspicious variable z that affects either or both of x, y. Generally, 
such z comes from a projection of a multidimensional vector that consists of many 
environmental variables, e.g. from a principal component;
Detection    make a hypothesis test to detect the inequalities by Eq. (28) or its proba-
bilistic version in a way similar to Eq. (15) discussed previously; if not, discard z; if 
yes, goto the next step;
Correction    put the corrected ρyz , ρyx, ρzx by Eq. (27) into the original ρ value-based 
test to check the corrected effects x → y , z → y and z → x.

Next, we consider Pearl’s SPRINKLER DAG illustrated in Fig.  5b, where the 
node with deg−(X4) = 2 is on the middle of a path X1 → X2 → X4 → X5 
and X1 → X3 → X4 → X5 . Each ρo

ξη for a path ξ → · · ·X4 → · · · η with 
ξ ∈ {X1,X2,X3}, η ∈ {X4,X5} involves the binary branching that enters X4 and thus is in 
a summation of two products, resulting in 6 equations. There are also some paths ξ → η 
without involving X4 . All together, we have the following equations:

All the correlation coefficients {ρo
ξη} are estimated from a set of samples, and the prob-

lem of identifying whether SPRINKLER DAG is underlying these samples becomes 
examining whether the joint equations are solvable, according to Table 2.

(27)ρyz =
ρo
zy − ρo

yxρ
o
zx

1− ρo 2
zx

, ρyx =
ρo
yx − ρo

yzρ
o
zx

1− ρo 2
zx

, ρzx = ρo
xz .

(28)
− 1 < ρo

zy − (ρo
zx + ρo

yx)ρ
o
zx and ρo

zy + (ρo
zx − ρo

yx)ρ
o
zx < 1,

− 1 < ρo
yx − (ρo

zx + ρo
yz)ρ

o
zx and ρo

yx + (ρo
zx − ρo

yz)ρ
o
zx < 1.

(29)

ρo
x1x5

= (ρx1x2ρx2x4 + ρx1x3ρx3x4 )ρx4x5 ,

ρo
x2x5

= (ρx2x4 + ρx1x3ρx3x4 )ρx4x5 , ρ
o
x3x5

= (ρx3x4 + ρx1x2ρx2x4 )ρx4x5 ,

ρo
x1x4

= ρx1x2ρx2x4 + ρx1x3ρx3x4 ,

ρo
x2x4

= ρx2x4 + ρx1x3ρx3x4 , ρ
o
x3x4

= ρx3x4 + ρx1x2ρx2x4 ,

ρo
x2x3

= ρx1x2 + ρx1x3 , ρ
o
x2x1

= ρx1x2 , ρ
o
x3x1

= ρx1x3 , ρ
o
x4x5

= ρx4x5 ,

subject to : all the − 1 < ρ ′s < 1.
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There are 10 equations with 5 unknowns, that is, the problem may be over-con-
strained, especially when {ρo

ξη} are estimated from a set of samples. Therefore, it is better 
to consider one least error approach, e.g. like Eq. (23).

Assuming that the equations by Eq. (29) are consistent, we may use a part of Eq. (29) to 
get the following solution:

from which we may get a necessary condition for identifying whether SPRINKLER DAG 
is underlying a given set of samples from the following inequalities:

or alternatively a probabilistic version similar to Eq. (15). Additional conditions may be 
added by considering the satisfaction of equalities that are obtained from Eqs. (29) and 
(30) as follows:

The first line is similar to Eq. (13) for a star structure while a star is indeed a part of 
SPRINKLER DAG in Fig.  5b, and the other four lines impose more restrictions that 
require {ρo

ξη} to satisfy.
Moreover, we proceed to even complicated cases that a path from a node ξ to a node η 

contains some nodes with indegrees bigger than 1. For each of such nodes, all the edges 
entering this node need to be considered, and some of these edges may come from a path 
on which there is again at least one node with indegrees bigger than 1. In such cases, ρo

ξη 
actually involves a tree with multiple branches and thus is computed from a summation 
of multiple products. One example is Pearl’s BACK-DOOR DAG illustrated in Fig. 5c. 
On the path Z1 → Z3 → Y  with deg−(Y ) = 3 , one edge comes X with deg−(X) = 2 , 
the other comes from Z3 with deg−(Z3) = 2 too, and thus ρo

Z1Y
 is a summation of three 

products. From ξ ∈ {Z1,Z2} to η ∈ {X ,Y } , there are 4 such paths, resulting in 4 equa-
tions. Together with considering Z1 → Z3 and Z2 → Z3 , as well as Z3 → X ,Z3 → Y  , we 
can get the following equations:

(30)

ρx2x1 = ρo
x1x2

, ρx3x1 = ρo
x1x3

, ρx4x5 = ρo
x4x5

,

ρx2x4 =
ρo
x2x4

− ρo
x1x4

1− ρo
x1x2

, ρx3x4 =
ρo
x3x4

− ρo
x1x4

1− ρo
x1x3

,

(31)
− 1 ≤ −ρo

x1x2
+ ρo

x2x4
− ρo

x1x4
and ρo

x1x2
+ ρo

x2x4
− ρo

x1x4
≤ 1,

− 1 ≤ −ρo
x1x3

+ ρo
x3x4

− ρo
x1x4

and ρo
x1x3

+ ρo
x3x4

− ρo
x1x4

≤ 1,

(32)

ρo
x1x5

= ρo
x1x4

ρo
x4x5

, ρo
x2x5

= ρo
x2x4

ρo
x4x5

, ρo
x3x5

= ρo
x3x4

ρo
x4x5

.

ρo
x2x3

= ρo
x1x2

+ ρo
x1x3

, ρo
x1x4

= ρo
x1x2

A+ ρo
x1x3

B, ρo
x2x4

= A+ ρo
x1x3

B, ρo
x3x4

= B+ ρo
x1x2

A,

A =
ρo
x2x4

− ρo
x1x4

1− ρo
x1x2

, B =
ρo
x3x4

− ρo
x1x4

1− ρo
x1x3

,

subject to : all the − 1 < ρo ′s < 1.
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The problem of identifying whether BACK-DOOR DAG is underlying these samples 
becomes whether the above joint equations are solvable, according to Table 2.

It deserves to recall that Wright’s path analysis (Wright 1934} also obtained a set of 
joint equations like the ones in Eq. (29) or Eq. (33) by considering the second-order sta-
tistics along paths among variables in a multiple system from a set of SEM equations. In 
other words, our approach in this paper inherited the spirit of getting joint equations of 
the second-order statistics by analysing paths. But there are two major differences in two 
studies: First, Wright aimed at solving variable quantities based on the joint equations 
from certain known variables, usually in a small scale system with a few variables. How-
ever, our approach aims at using these joint equations to examine whether the topol-
ogy of a specific DAG is consistent to the one underlying observable data samples, that 
is, making topology identification in T-phase as summarised in Table 2, while not only 
parameters and unknowns in the system are re-estimated in P-phase via optimisation 
for the least error or maximum likelihood but also a best model is searched in C-phase 
by considering both best-fit and causality. Second, our approach focuses on the relation 
between ρ -values and the topology in consideration by assuming that variables are nor-
malised to zero means and unit variances. In other words, the joint equations consid-
ered in our approach merely involves correlation coefficients which considerably reduce 
the number of free parameters that are not helpful to topology identification. However, 
Wright’s path analysis considered the joint equations that contains not only correlation 
coefficients but also path coefficients as well as variances.

Casual ρ‑DAG discovery: general case, ρ‑SAT problem, and basic mechanisms

We further proceed to the general cases of ρ-DAG, considering the example illustrated 
in Fig. 5d that shares the same undirected topology illustrated in Fig. 4f. To compute ρo

ξη 
from a node ξ to a node η , we again pay attention to those nodes with indegree bigger 
than 1, which make ρo

ξη computed from subgraph or subtree instead of simply via a path. 
For example, the path from X4 to X7 contains W2 with deg−(W2) = 2 while one of its two 
edge comes from a path that contains W1 with deg−(W1) = 3 . The information flows 
that sink at X7 involve almost the entire DAG except edges W4 → X4 and W3 → X5 . 
Since each of X1,X2,X3 is reachable from X4 , the information flows come from four 
sources X1,X2,X3,X4 instead of merely X4 . We can compute ρo

x4x7
= EX4X7 in the fol-

lowing hierarchy:

(33)

ρo
z2x

= ρz3z2ρxz3 , ρ
o
z1x

= ρxz1 + ρz3z1ρxz3 , ρ
o
z3y

= ρyz3 + ρxz3ρxy,

ρo
z1y

= ρz1z3ρyz3 + ρxz1ρxy, ρ
o
z2y

= ρz2y + ρz3z2ρyz3 + ρxz2ρxy,

ρo
xy = ρxy + ρxz3ρyz3 + ρyz2ρz3z2ρz3x,

ρo
z3x

= ρxz3 + ρz3z1ρxz1 , ρ
o
z1z3

= ρz1z3 , ρ
o
z2z3

= ρz2z3 ,

subject to : all the − 1 < ρ ′s < 1.

(34)[(ρo
x1x4

ρx1w1 + ρo
x2x4

ρx2w1 + ρo
x3x4

ρx3w1)ρw1w2 + ρx4w3ρw3w2 ]ρw2w4ρw4x7 ,
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in which three information flows from X1,X2,X3 are merged at W1 according to Eq. 
(25), see the above part inside (· · · ) , and then further merged with the one from X4 at 
W2 , see the above part inside [· · · ] . It should be noted that the correlation coefficients 
ρo
x1x4

, ρo
x2x4

, ρo
x3x4

 all have the superscript “ o ” because the ρ value from X4 to each of 
X1,X2,X3 is computed from samples instead of acting as a parameter in the DAG. In 
a similar way, we may compute ρo

x1x7
, ρo

x2x7
, ρo

x1x7
 , and thus obtain 4 equations. With X7 

replaced by X6 and X5 , we will obtain other 4 + 4 equations. As to each pair among 
X5,X6,X7 , ρo

x6x7
 applies to Theorem 3 and thus is simply given by ρw4x7ρw4x6 , while each 

of ρx5x7 and ρx5x6 is not applicable to Theorem 3.
For ρx5x7 , it contains not just merely a path in the pattern 

←← · · · ←j→→ · · · → with ρx5w3ρw3w2ρw2w4ρw4x7 and j at W3 . There is 
also a flow that injects in at W2 and thus ρx5w3ρw3w2 should be replaced by 
[(ρx1x4ρx1w1 + ρx2x4ρx2w1 + ρx3x4ρx3w1)ρw1w2 + ρx5w3ρw3w2 ]. Similarly we can obtain 
ρx5x6 .

Totally, we get 4 + 4 + 4 + 3 = 15 equations jointly for identifying whether the ρ-
DAG illustrated in Fig. 5d is underlying a given set of samples by checking whether these 
joint equations are solvable, for which we are lead to Table 2 again.

In a summary, ρo
ξη between nodes ξ and η is computed in the following four steps:

Fig. 6  Basic mechanisms: PRODUCT, FAN-in/FAN-out, HIERARCHY, BOUND. a  Converging causal tree. 
b Diverging causal tree. c Star topology collapsed from b. d Star topology collapsed from a. e FAN-in 
mechanisms. f FAN-out mechanisms. g Subpixel interpolation or mixture subpixel interpolation.h BOUND 
mechanisms. i Classical factor analysis (FA). j FA mix-star extension. k Forward neural networks. l backward 
neural networks
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Step 1    find out every pair of nodes ξ , η that are directionally correlated by a path 
in pattern ←← · · · ←j→→ · · · → , where j can locate at ξ or η as well as any mid-
dle point;
Step 2    on every path found above, identify those junction nodes featured by their 
indegrees bigger than 1, and pool all the related paths into a hierarchy similar to 
the one in Eq. (34).
Step 3    attach each edge a → b in this hierarchy by its corresponding ρab;
Step 4    sum up at each junction node the ρ-products of sub-paths from the bot-
tom up, in a way similar to the one in Eq. (34), until the top of the hierarchy.

Alternatively, Eq. (34) can be equivalently rewritten into a format of a summation of 
four product terms, and each product actually represents a path from X4 to X7.

This is also generally true. There are three possible scenarios for a pair of nodes 
ξ , η in a ρ-DAG. First, it can be ignored if it is not linked by any path in the pattern 
ξ ←← · · · ←j→→ · · · → η . Second, it is linked by only one such path and thus is 
applicable to Theorem 3. Third, the pair is linked by a number paths in the pattern 
ξ ←← · · · ←j→→ · · · → η due to the existence of those junction nodes. For the last 
two scenarios, we may extend Theorem 3 into the following one.

Theorem 4  Given a pair of nodes ξ , η in a ρ-DAG, if the pair is linked by a number 
nξη paths with each in ξ ← x

(r)
1 ← · · · ← x

(r)
j → · · · → x

(r)
mr → η, r = 1, . . . , nξη, 

where j may locate at ξ or η as well as any middle point, we have ρo
ξη =

∑nξη
r=1 ρ

(r)
ξη  and 

ρ
(r)
ξη = ρ

(r)
ξx1

ρ
(r)
x1x2 · · · ρ

(r)
xj−1xjρ

(r)
xjxj+1 · · · ρ

(r)
xmr−1xmr

ρxmr η
.

When nξη = 1 , this theorem degenerates back to Theorem  3 that further returns 
back to Theorem 2 when all the directed edges are replaced by undirected edges. In 
other words, each directed edge in Theorem  3 and Theorem  4 may be replaced by 
undirected edge. With one or more of directed edges replaced by undirected edges, 
Theorem  4 may become applicable to the cases that consider paths with each in 
the pattern ξ←x

(r)
1 ←· · ·←x

(r)
j →· · ·→x

(r)
mr→η, r = 1, . . . , nξη , where the overline 

indicates considering not only a case that two nodes are directly linked by either a 
directed edge or a undirected edge, but also a case that we even do not know whether 
there is an edge between the two nodes as long as the correlation coefficient between 
the two nodes can be computed either directly from observable data or indirectly rep-
resented by an unknown via a path between the two nodes. Simply, the correlation 
coefficient is zero if there is no such a path. Therefore, we become able to consider the 
cases that the directions of edges are partly known and partly unknown.

Further insight on Eq. (34) can be obtained by imagining a special case that each ρ
-parameter takes values either around 0 or around 1. Then, a product of two ρ-param-
eters likes a logical ’AND’ gate, while a sum of two ρ-parameters likes a logical ’OR’ 
gate. The problem of identifying ρ-parameters by solving equations with ones like Eq. 
(34) becomes somewhat similar to the problem of Boolean satisfiability or proposi-
tional satisfiability (shortly SAT) that has wide real applications in artificial intelli-
gence, circuit design, and automatic theorem proving (Vizel et al. 2015). On the other 
hand, we may regard that the classic SAT problem is extended into the above ρ-SAT 
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problem by solving equations with ones like Eq. (34), from binary valued to real val-
ued and from deterministic to probabilistic. A lot of studies have been made on the 
classical SAT problem, which may provide some references to further study on the ρ
-based SUM-PROD system.

It follows from observing Eq. (34) and Fig. 5d as well as Fig. 6a that SUM operates 
on a node v with deg−(v) > 1 and integrates arrows that act in the same dimension 
or subspace, while PROD operates on an arrow or a directed path of several arrows 
along a same direction and integrates the arrows that act in different dimension or 
subspaces with each arrow adding in one dimension. Actually, SUM is of several 
choices that implements  the FAN-in mechanism, as elaborated in Fig.  6e. One end 
is SUM that treats each fan-in information evenly and thus considers the average of 
all the fan-in flows, e.g. a classic neuron model, while the other end is WTA (winner-
take-all) that treats fan-in flows competitively to pick the best one as winner, e.g. the 
pooling operation in a conventional neural networks. Between the two ends, SUM 
may be replaced by some weighted average, and WTA may be replaced by some soft 
version of competition, e.g. based on a finite mixture.

The information flows in Fig. 6a are converging from the observation nodes to the 
tree root, featured by deg−(v) > 1 for every inner node v in the tree. Shortly, we may 
use a converging tree to name such a tree, which is actually an example of Abstraction 
model or Yang model. Reversing the direction of every edge, the information flows in 
Fig. 6b are diverging from tree’s root or hidden nodes to the visible nodes, featured by 
deg+(v) > 1 for every inner node v in the tree. Shortly, we may use a diverging tree to 
name such a tree, which is actually an example of Generative model or Ying model.

In Fig.  6b, the FAN-in mechanism is replaced by its counterpart named FAN-out 
mechanism, as elaborated in Fig. 6f. At one end, the counterpart of SUM is ASSIGN 
that evenly emits outflows out of every node v with deg+(v) > 1 , e.g. an outer product 
generative unit in a deconvention networks or in the reconstruction part of LMSER 
learning networks (Xu 1993); while the other end is again WTA that emits merely the 
best one out of all the fan-out flows competitively. Again, there may also be weighted 
average and soft competition between the two ends,

Particularly, we suggest that such a WTA FAN-out mechanism may improve image 
reconstruction to perform WTA subpixel interpolation or alternatively mixture sub-
pixel interpolation, as simply sketched in Fig.  6g. The bottom level of reconstruction 
or deconvention networks does not terminate at the pixel level. Instead of minimising 
the error between each pixel and its reconstruction, the bottom level is designed for 
reconstructing subpixels. For each pixel in a sample image, a WTA competition is made 
among the reconstructed subpixels underlying the pixel that corresponds to this sample 
pixel, we minimise the error between this sample pixel and the winning reconstructed 
subpixel. Alternatively, we may also replace WTA by a soft competition, e.g. by a poste-
rior weighting p(i|pixel) via considering p(pixel) =

∑
i αip(subpixels).

Next, the locations of these FAN-in/FAN-out nodes specify a hierarchy of nodes and 
edges in consideration, which corresponds to a HIERARCHY mechanism that defines a 
specific combination of those nodes’ locations or a partial order hierarchy.

Moreover, all the previous analyses in this paper assume that variables are nor-
malised to zero means and unit variances, which is actually one example of 



Page 33 of 38Xu ﻿Appl Inform  (2018) 5:5 

implementing BOUND mechanism. A variable with bounded variance actually implies 
that this variable varies with a bounded energy. In computation, requiring a bounded 
variance is equivalent to requiring a unit variance, implemented simply by normalisa-
tion. Equivalently, such a bounded mechanism may  be implemented by a nonlinear 
transform as sketched in Fig. 6h, e.g. sigmoid nonlinearity, its piecewise approximation, 
and the widely used LUT nonlinearity.

In a summary, the PROD and FAN-in/FAN-out mechanisms jointly describe depend-
ence among variables, with PROD harmonising effects from different parts of one indi-
vidual and FAN-in/FAN-out mechanisms gathering from and allocating among different 
individuals; while the HIERARCHY mechanism defines conditional independence and 
how variables are organised, and the BOUND mechanism ensures practical feasibility. 
These four basic aspects coordinately operate a casual ρ-DAG model or even a general 
intelligent system.

Removing HIERARCHY mechanism, e.g. the tree hierarchy in Fig.  6b will collapse 
such that the tree root becomes the centre of a star topology as illustrated in Fig.  6c, 
while every path between the tree root and each leaf collapses into an edge of the star. 
Further removing PROD mechanism, the corresponding ρ product collapses into one 
variable. Apparently, both the tree hierarchy in Fig. 6b and the star topology in Fig. 6c 
have the same number of SEM equations and thus a same representative capacity. How-
ever, the HIERARCHY and PROD mechanisms impose additionally higher order joint 
equations on these SEM equations for encoding not only variables but also how they are 
organised. Similar understandings may be obtained from the converging tree illustrated 
in Fig. 6a and its collapsed star topology in Fig. 6d.

One step forward from star topology illustrated in Fig. 6c is bundling m star topologies 
in parallel to share the same n visible nodes, with conditional independence added via 
m independent root variables. As illustrated in Fig. 6i, it follows from the visible node 
side that adding an edge between each pair of visible nodes xi, xj will result in m loops 
with each associated with one factor fr and thus the correlation coefficient ρij between 
the pair is a SUM-PROD form ρxixj =

∑m
r=1 ρxifrρxj fr . Accordingly, lumping the SEM 

equations that correspond to the m star topologies together and setting variables in zero 
means and unit variances, we are actually lead to the following classical factor analysis 
(FA) model with an m-dimensional factor vector f = [f, . . . , fm] of mutually independent 
elements:

from which we directly get ρii = 1 and [ρij] = AAT +�e as a matrix form of the above 
SUM-PROD form. It may suffer over-fitting when the number n×m of unknown 
parameters in A is larger than 0.5n(n− 1) . In the degenerated case m = 1 , we have 
[ρij] = aaT + I with a = [a1, . . . , an]

T , which actually corresponds to Eq. (13) and may 
suffer under-fitting because 0.5n(n− 1) > n for n > 1 . One way to remedy over-fitting 
is to prune away extra parameters, which is typically called sparse learning. However, it 
cannot cover the role of HIERARCHY.

As illustrated in Fig.  6j, we top on the factor f  with another node that exclusively 
selects one of factors such that visible nodes become no longer simultaneously shared by 
different stars, which actually acts as a mixture of star topologies that effect exclusively 

(35)x = Af + e, Ef = 0, Ee = 0 EfeT = 0, E[ffT ] = I , EeeT = �e is diagonal,
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on visible nodes and thus reduces the coupling width from m towards 1. In general, a 
HIERARCHY mechanism that defines a multiple level partial order hierarchy via speci-
fying the locations of these FAN-in/FAN-out nodes and their corresponding mecha-
nisms featured by two ends alternatively.

The HIERARCHY mechanism is not just increasing layers to go ’deep’. Multiple lin-
ear layers obtained with one layer topped on the other layer will collapse into merely 
one layer because variables are Gaussians and their summations are still Gaussians. 
Instead, HIERARCHY defines a partial order hierarchy, which will not collapse because 
of sparse links and constraints imposed by higher order joint equations that are solvable 
as described by Table 2. Also, similar arguments are applicable to a neural networks as 
illustrated in Fig. 6k.

Understandably, the more layers there are, it becomes more easier to accommodate 
such a hierarchy, which echoes the opinion in Ref. Xu (2017) and interprets why deep 
learning is preferred, that is, we need to encode not only variables but also how they 
are organised. In a particular task domain, we only need networks with a limited depth 
because patterns underlying samples are expressed in hierarchies with a limited depth. 
Also, a partial order will not be affected by adding one extra edge weighted simply with 
1. Thus, increasing depth will not affect performance, but waste more computing cost in 
both memory and learning time.

Last but not least, the BOUND mechanism not only ensures practical feasibility, but 
also helps the HIERARCHY mechanism. First, embedding nonlinearity after each sum-
mation, i.e.,  x(i) = s(

∑
i wijy

(j) + ε), will remedy the above mentioned collapsing of mul-
tiple linear layers. Second, it has been discovered in Ref. Xu (1993) that adding a sigmoid 
nonlinearity after a summation drives hidden nodes towards mutually independent and 
get organised, which again echoes the opinion made in Ref. Xu (2017) and interprets 
why it is beneficial to make a bottom-up unsupervised learning as pre-training. Third, 
a linear transform from one level of variables y = {y(j)} to the next level of variables 
x = {x(i)} will not only map a specific value of y into a specific value of x but also make 
the neighbourhood or topological relation of y preserved after being mapped to the one 
of x . Thus, we should only consider those of post-summation nonlinearity s(.) that can 
preserve this nature, e.g. ones in Fig. 6h.

Concluding remarks
Examining AlphaGoZero together with revisiting early studies on A* search, MCTS is 
found to share a scouting technique with CNneim-A that was proposed in 1986. The 
strengths of AlphaGoZero and CNneim-A are further integrated to develop a new fam-
ily named deep IA-search, including DSA, DCA, DBA, and V-AlphaGoZero, as well as 
their extensions DSA-E, DCA-E, DBA-E, and AlphaGoZero-E. We are further motivated 
to perform reasoning with the help of deep IA-search. Especially, casual reasoning is 
addressed and a correlation coefficient-based approach is proposed for identifying cas-
ual ρ-tree and casual ρ-DAG, featured by performing TPC learning to discover causality 
in three phases. Algorithms are sketched for discovering casual topologies of triplets, 
stars, trees, and ρ-DAG, with further details on Yule–Simpson’s paradox, Pearl’s Sprin-
kler DAG, and Back door DAG. Moreover, the classic Boolean SAT problem is extended 
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into one ρ-SAT problem, and the roles of four fundamental mechanisms in an intelligent 
system are elaborated, with insights on integrating these mechanisms to encode not only 
variables but also how they are organised, as well as on why deep networks are preferred 
while extra depth is unnecessary.

Also, the insights motivate the possible directions for further investigations:

(a) Though the ρ-based TPC learning proposed only considers the second order sta-
tistics, implying that all the variables are Gaussians and all the SEM equations are 
linear relations, it is directly applicable to tasks with nonGaussian variables and non-
linear relations as a sort of approximation. It is likely that the obtained topologies 
of ρ-tree and ρ-DAG may provide good approximations already, which motivates a 
direction of extension that performs T-phase as it is but modifies each SEM equation 
with its linear relation replaced by a post-linear nonlinearity and its driving noise by 
a nonGaussian variable. Example we may extend Eq. (24) into 

 where each of szx(.), syz(.), syx() is some nonlinear scalar function, e.g. a sigmoid non-
linearity, and at least one of ezx, eyz , eyx is a nonGaussian variable. It may be observed 
that higher components of nonlinear functions get not only each variable but also 
multiple variables involved in higher order statistics.
(b) Embedding understandings obtained from causal tree into deep learning may 
improve performances, especially when there is merely a small size of samples. 
Causal tree or precisely hierarchical SEM equations may be used as an alternative to 
deep learning. Learning methods may be developed based on Theorem 4 to conduct 
a constrained optimisation similar to Eq. (20), in a way similar to identifying SPRIN-
KLER DAG and BACK-DOOR DAG. This alternative may also lay a road that turns 
the black box of deep learning into interpretable causal analyses.
(c) We may further jointly consider a Yang model as illustrated in Fig.  6k and a 
Ying model as illustrated in Fig. 6l. One early example is bidirectional multilayer 
neural networks proposed under the name Lmser in 1991 (Xu 1991, 1993). Let 
the output y in Fig. 6k to be directly the input f in Fig. 6l, we are lead to the classi-
cal auto-association or autoencoder (Bourlard and Kamp 1988). Differently, Lmser 
extended autoencoder in four aspects. First, the weight matrix A of each layer in 
Fig. 6k is directly used as the weight matrix W of the corresponding layer in Fig. 6l, 
simply by letting A = WT  , i.e. currently so-called weight sharing or domain trans-
ferring. Second, the corresponding nodes are also forced to be same, that is, let 
vi = ui, i = 1, . . . ,m as illustrated in Fig.  6k, l. Third, dynamic effect is approxi-
mately considered with the reconstructed x of the input x by the model in Fig. 6l 
being re-inputed into the model in Fig. 6k, resulting in a learning rule that consists 
of a term equivalent to Hinton’s wake-sleep algorithm, plus one correcting term 
that reduces confusion in boundary area. Third, for labeled data, supervised sig-
nals may also get the top–down signals with supervised and unsupervised learn-
ing jointly (see Section  6 in Ref. Xu (1991)), i.e. currently so-called semi-super-
vised learning. With the help of these developments, Lmser may be used not only 

(36)
x = szx(ρzxz)+ ezx, y = yz + yx,

yz = syz(ρyzz)+ eyz , yx = syx(ρyxx)+ eyx,
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for both reconstruction (i.e. currently so-called data generation) and pattern rec-
ognition, but also for concept driven imaginary recall that visualises thinking, pre-
activation driven top–down attention, associative memory, pattern transform, and 
interpreting development of cortical field templates, as well as ctreative mapping. 
Moreover, as addressed at the end of the last section in this paper, the nature of 
preserving the neighbourhood or topological relation by Lmser and auto-encoder 
also facilitates concept forming and organising in the top encoding domain, i.e. 
the domain of y and f in Fig. 6k, l, which is superior to those models in lack of such 
preservation, e.g. variational autoencoder (Schmidhuber 2015), deep generative 
model (Rezende et  al. 2016), generative adversarial networks (Goodfellow et  al. 
2014). Furthermore, further improvement may be developed by RPCL-Lmser and 
LVQ-Lmser that perform vector quantisation in the encoding domain of Lmser by 
LVQ (Kohonen 1995) for labelled data and RPCL (Xu et al. 1993) for unlabelled 
data.
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