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Introduction
Financial and economic data are naturally recorded as temporal sequences or time 
series, and thus one of major tasks on those data is making time series analysis. Typi-
cally, a mathematical model is obtained to describe the regression relation of the current 
observation from its past observations, such that the future observation is predicted. 
Such a prediction task has been extensively studied in both the literature of time series 
analysis and the literature of machine learning and neural networks.

One most classic tool for time series analyses is the autoregressive (AR) model or gen-
erally autoregressive–moving-average (ARMA) model, which describes a linear depend-
ence of the current observation on past values and noise disturbances. Extended from 
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describing stationary processes to data with some identifiable trend of a polynomial 
growth (Box and Jenkins 1970), an initial differencing step can be applied to remove 
such a non-stationarity. See Box 1 in Fig. 1; the autoregressive integrated moving average 
(ARIMA) model is used to refer a “cascade” of this initialization and ARMA. For sim-
plicity, we still prefer to use AMRA to refer ARIMA by regarding such an initialization 
as a pre-processing stage.

In the literatures of statistics and econometrics, as outlined in Fig. 1 by Box 2, generaliza-
tions of ARMA have also been made toward Autoregressive Conditional Heteroskedasticity 
(ARCH) and generalized ARCH (GARCH) for considering conditional heteroskedastic-
ity of variables (Engle 1982; Bollerslev 1986), to nonlinear ARMA for modeling nonlinear 
dependence (Leontaritis and Billings 1985), and Vector AR (VAR) for capturing the linear 
interdependencies among multiple time series (Sims 1980; Engle and Granger 1987).

The field of NN-ML in economics and finance involves each of the three streams of 
studies. In the early stage, most efforts were put on using multilayer neural networks or 
recurrent networks for a sophisticated nonlinear dependence of the current observation 
on past values and noise disturbances, as outlined in Fig. 1 by Box 3. There have been 
already several books on these studies (e.g., Azoff 1994; Gately 1995; Zhang 2003), and 
thus this chapter does not cover this type of studies.

Since 1994, the author’s group has made many efforts on extending AR, ARMA, 
ARCH and GARCH models into finite mixture or mixture-of-experts (Xu 1994, 1995a, 
b; Cheung et al. 1996, 1997; Leung 1997; Kwok et al. 1998; Wong et al. 1998; Chiu and 

Fig. 1  A road map on studies of time series prediction
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Xu 2002a, 2003; Tang et al. 2003). Outlined in Fig. 1 by Box 4, studies actually proceed 
along an alternative road for modeling temporal dependence featured with nonlinearity, 
heteroskedasticity and non-stationarity. “Financial prediction: time series models and 
three finite mixture extensions” section is dedicated to the studies summarized in Fig. 1, 
together with introductions on learning implementations by the maximum likelihood 
(ML) learning, the rival penalized competitive learning (RPCL) (Xu et al. 1992, 1993), 
and approaches of learning with model selection.

“Dynamic trading and portfolio management” section is dedicated to the studies sum-
marized in Fig.  2, toward portfolio management directly, instead of making nonlinear 
modeling for analyses and predictions. Around the second half of the 1990s, efforts 
in the literature of neural networks and machine learning in economics and finance 
started to shift to adaptive trading; see Box  1. Subsequently, these efforts converge to 
the road pioneered by the Markowitz portfolio theory (Markowitz 1952) that maximizes 
the portfolio expected return for a given amount of portfolio risk by carefully choosing 
the proportions of assets; see Box  2. Based on Markowitz’s mean–variance paradigm, 
Sharpe (1966, 1994) further suggests evaluating the goodness of an asset by a ratio of the 
excess asset return; see Box 3. Later, it is further realized that the return variance is not 
an appropriate measure of portfolio risk because it counts the positive fluctuation above 
the expected returns (called upside volatility) also as the part of risk. The downside risk 
thus becomes a topic to study, as illustrated in Fig. 2 by Box 4; e.g., Markowitz (1959) 
counts the volatility below the expected returns only.

After a brief introduction on the above-mentioned boxes in Fig. 2, “Dynamic trading 
and portfolio management” section further reexamines the Markowitz paradigm and 
Sharpe ratio with extensions that maximizes the expected returns and the upside vola-
tility while minimizing the downside risk, with the help of a priori aided diversification 
(Hung et  al. 2000, 2003), see Box  5 in Fig.  2. Moreover, several extensions have been 

Fig. 2  A road map on studies of portfolio management
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proposed along this direction in Sect III(C) of Xu (2001), including that nonparamet-
ric estimates of the expected return and volatilities are improved by ARCH or GARCH 
models; see Box 6 in Fig. 2.

Next, “Market modeling: APT theory and temporal factor analysis” section is dedi-
cated to the efforts summarized in Fig. 3. The Markowitz scheme also leads to the Capi-
tal Asset Pricing Model (CAPM) (Sharpe 1964). However, the CAPM is criticized to be 
not enough to describe a market behavior merely via one endogenous factor. Then, a 
general linear model of multiple factors has been proposed under the name of Arbitrage 
Pricing Theory (APT) (Ross 1976). Unfortunately, the APT has not been widely accepted 
in popularity similar to the CAPM. The reason lies largely with its significant drawback: 
namely, its implementation is difficult due to the lack of specificity regarding the number 
and nature of the factors that systematically affect asset return (Dhrymes et  al. 1984; 
Abeysekera and Mahajan 1987).

In “Market modeling: APT theory and temporal factor analysis” section, we start from 
introducing three approaches that are usually applied for the implementation of APT 
and address their drawbacks as outlined in “Introduction” section of (Xu 2001), which 
leads to an observation that the lack of specificity regarding the endogenous factors is 
not just regarding the number and nature of the factors, but even more seriously arising 
from the so-called rotation indeterminacy implemented by factor analysis. Thus, further 
efforts should explore how to add certain structure to remove or remedy this indetermi-
nacy. As outlined in Fig. 3 by Box 1 and Box 2, temporal factor analysis (TFA) (Xu 1997, 
2000) is suggested as a generalization of the original APT theory (Xu 2001) to tackle 
such an incompleteness, featured with a first-order autoregressive dependence added to 
each factor such that the incompleteness caused by a notorious rotation indeterminacy 
is removed. Such a generalization is thus called temporal APT in a sense that temporal 
relation is taken into consideration.

Fig. 3  A road map on studies of generalized apt theories and applications
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This section further considers the influences of macroeconomic indexes such as GDP, 
inflation, investor confidence and yield curve, via their roles in controlling or modulat-
ing the temporal factors, which leads to a macroeconomics-modulated temporal APT 
shown in Fig.  3 by Box  3. Alternatively, TFA may also be replaced by non-Gaussian 
factor analyses (NFA) such that the incompleteness caused by rotation indeterminacy 
can also be removed; see Box 6 and Box 7 in Fig.  3. Actually, both the temporal fac-
tors and non-Gaussian factors are two aspects of one market model: one observes a 
dynamic market process, while the other describes the market with all the time points 
projected to one reference spot. Even generally, conditional heteroskedasticity may also 
be added to the factors, which finally leads to Box 8 in Fig. 3, namely, a general formula-
tion for financial market modeling that systematically integrates all the ingredients. As 
illustrated in Fig.  3 by Box  4, various prediction tasks and investment managements 
can also be conducted with the help of the temporal APT and the macroeconomics-
modulated temporal APT.

Further developments of these linear models introduced are suggested to be imple-
mented by the Bayesian Ying–Yang (BYY) harmony learning. In “Bayesian Ying–Yang 
harmony learning and two exemplar learning algorithms” section, the fundamentals 
of BYY harmony learning are briefly introduced. For learning alternative mixture-of-
experts-based AR, ARCH and GARCH models, both gradient-based algorithms and 
EM-like algorithms are provided for implementations, featured with automatic model 
selection and in reference of the well-known EM algorithm.

Except for the first column in Fig. 1, where only one time series is considered, mostly 
we consider dependences across more than one channel of time series. Prediction and 
decision making in portfolio management are based on such dependences that may not 
necessarily reflect causal structure underlying data, while it will be better to make pre-
diction and decision based on casual structure. In “Linear causal analyses” section, path 
analyses (Wright 1934) for linear causal analyses is briefly reviewed, a recent develop-
ment on ρ-diagram (Xu 2018) is refined for cofounder discovery and a causal poten-
tial theory is proposed. Further discussions are made on structural equation modeling 
(SEM) (Ullman 2006; Pearl 2010a; Westland 2015; Kline 2015) and its relations to modu-
lated TFA-APT and nGCH-driven M-TFA-O.

Financial prediction: time series models and three finite mixture extensions
Time series models and neural networks

One most classic tool for time series analyses is the autoregressive (AR) model or gener-
ally autoregressive–moving-average (ARMA) model as follows: 

where εt ∼i.i.d. G(ε|0, σ 2) denotes that ε1, . . . , εt , . . . are i.i.d. samples from G(ε|0, σ 2) , 
while G(u|µ, σ 2) denotes a Gaussian distribution of u with the mean μ and the variance 
σ2. Particularly, the ARMA model degenerates to the AR model when q = 0.

The ARMA model is appropriate to describe a wide sense stationary sequence. Extension 
has been made to describe data ξt that have some clearly identifiable trend of a polynomial 

(1)xt = a0 + εt +

q
∑

j=1

ajxt−j +

p
∑

i=1

biεt−i, εt ∼
i.i.d. G(ε|0, σ 2),
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growth (Box and Jenkins 1970); see Box 1 in Fig. 1. It is made simply by an initial differenc-
ing to remove the non-stationarity. That is, we get

A cascade of this initialization and ARMA is called the autoregressive integrated moving 
average (ARIMA) model. For simplicity, we prefer to still use AMRA to indicate ARIMA by 
regarding such an initialization as a pre-processing stage.

In the literature of statistics, econometrics, control and signal processing, generalizations 
of ARMA have been made toward Autoregressive Conditional Heteroskedasticity (ARCH) 
and generalized ARCH (GARCH) for considering variables conditional to heteroskedastic-
ity (Engle 1982; Bollerslev 1986); see Box 8 in Fig. 1. Namely, we consider 

where σt is not a constant, but given by the following regression: 

which is usually denoted by GARCH(p,q) and degenerates to the ARCH model when 
p = 0.

Extensions of the ARMA model have also been made under the name of nonlinear 
ARMA (NARMA) for modeling nonlinear dependence (Leontaritis and Billings 1985) 
and to Vector AR (VAR) for capturing the linear interdependencies among multiple time 
series (Sims 1980; Engle and Granger 1987). In the literature, many efforts have been made 
on using multilayer neural networks or recurrent networks for a sophisticated nonlinear 
dependence of the current observation on past values and noise disturbances, as illustrated 
by Box 3 in Fig. There are already several books on these studies (e.g., Azoff 1994; Gately 
1995; Zhang 2003), and thus this chapter does not cover this type of studies. Instead, the 
subsequent two subsections will focus on Box 4 in Fig. 1, namely, learning mixture of mul-
tiple models.

Learning mixture of AR, ARMA, ARCH and GRACH models

Studies on finite mixture extensions of AR, ARMA, ARCH and GARCH models can be 
summarized into the following general expression: 

(2)xt = �dξt , where d > 0, �ut = ut − ut−1and ut = �dξt .

xt = a0 +

q
∑

j=1

ajxt−j + εt , εt = σt zt , zt ∼
i.i.d. G(z|0, 1),

(3)
σ 2
t (ϑ) = σ 2

0 +

q
∑

i=1

βiε
2
t−i +

p
∑

j=1

ωjσ
2
t−j ,

ϑ = {σ 2
0 > 0,βi ≥ 0, for i > 0,ωj ≥ 0, for j ≥ 0},

(4)

P(εt |x
q
t−1, θ) =

k
∑

ℓ=1

αℓG(xt − µℓ,t |0, σ
2
ℓ,t),

µi,t =
⌢
xt
(

x
qi
t−1,ai

)

, xmt−1 =
[

xt - 1, . . . , xt - m]
T,ai =

[

a0,i, a1,i, . . . , aqi ,i]
T,

εt = xt −
⌢
xt
(

x
q
t−1, θ

)

, q = max{q1,, . . . , qm},
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where we consider k regression models xt = µi,t + εi,t , i = 1, , . . . , k with each 
µi,t =

⌢
xt
(

x
qi
t−1,ai

)

 being either of AR, ARMA, ARCH and GARCH models, and with 
the corresponding residual ɛi,t from G(εi,t |0, σ

2
i,t) . Typically, the studies of the AR, ARCH 

and GARCH models share the following detailed expression (Xu 1995a, b; Cheung et al. 
1997; Kwok et al. 1998; Wong et al. 1998; Chiu and Xu 2003, 2004a; Tang et al. 2003):

For ARMA (Kwok et  al. 1998; Tang et  al. 2003), the detailed expression of 
µi,t =

⌢
xt
(

x
qi
t−1,ai

)

 is given by Eq.  (1). Moreover, ⌢xt
(

x
qi
t−1,ai

)

 can be also a specific non-
linear function, e.g., given by three-layer neural networks (Cheung et al. 1996, 1997) or the 
normalized radial basis function (NRBF) and extended NRBF (ENRBF) (Xu 1998, Xu 2009).

According to Eq. (4), a sequence x1, …, xt, … may come from the ith one of the k models 
with the probability αi, and jointly the k models describe the sequence x1, …, xt, … with a 
residual ɛt that comes from a Gaussian mixture P(εt |x

q
t−1, θ) . In such a way, a nonlinear 

dependence of the current observation on past values and noise disturbances is modeled 
by probabilistically combining a mixture of linear models, which keeps the model structure 
simple and easy to learn. Moreover, non-stationarity beyond ones handled by ARIMA and 
GARCH models is able to be modeled via switching among individual linear models.

Also, a sequence x1, …, xt, … may be segmented into pieces with different statistical prop-
erties, simply by Bayesian posterior as follows (Xu 1994, 1995a, b):

that is, xt is identified as coming from the j*th model by 

To reduce the number of small fragments, some post-processing or smoothing reg-
ularization may be added. Moreover, we may extend a finite mixture into a hidden 
Markov model (HMM) (Rabiner 1989), in which each hidden state is associated with one 
G(xt − µj,t |0, σ

2
j,t) and the transition between state is described by

(5)

µi,t =
⌢
xt
�

x
qi
t−1,ai

�

= aTi

�

1

x
qi
t−1

�

, σ 2
i,t =







σ 2
i,0 > 0, (a)AR

σ 2
i,0 + bTi E

qi
i,t−1, (b)ARCH

σ 2
i,0 + bTi E

qi
i,t−1 + wT

i

�pi
i,t−1, (c)GARCH

En
i,t−1 =

�

ε2i,t−1, . . . , ε
2
i,t−n]

T,wi =
�

w1,i, . . . ,wpi ,i]
T, ωj,i ≥ 0, j = 1, . . . , pi

Σn
i,t−1 =

�

σ 2
i,t−1, . . . , σ

2
i,t−n]

T,bi =
�

β1,i, . . . ,βqi ,i]
T, βj,i ≥ 0, j = 1, . . . , qi.

(6)P(jt |xt , x
q
t−1, θ) =

αjt G(xt − µjt ,t |0, σ
2
jt ,t

)
∑k

jt=1 αjt G(xt − µjt ,t |0, σ
2
jt ,t

)
,

j∗ = argmaxjP(j|xt , x
q
t−1, θ) or j∗ = argmaxj[αjG(xt − µj,t |0, σ

2
j,t)].

(7)

αt = Qαt−1,αt = [α1,t , . . . ,αk ,t ]
T, 0 ≤ αj,t ≤ 1,

∑

j

αj,t = 1,

Q =
[

qj|i

]

, 0 ≤ qj|i ≤ 1,

k
∑

i=1

qj|i = 1,
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with αj,t estimated as time proceeds and then used in Eq. (5) and Eq. (6). Moreover, we 
can also further modify Eq. (5) and Eq. (6) into 

Next, we proceed to estimate xt from the finite mixture by Eq. (4). It follows that

that is, we improve the prediction of xt via each individual model by a line combination 
weighted by each αi. However, this improvement is limited because αi is a constant that 
does not change as the samples vary with time.

Each αi in Eq. (4) cannot directly be replaced by its corresponding Bayes posterior by  
Eq.  (5). First, P(jt |xt , x

q
t−1, θ) cannot be moved out of the integral ∫ xtP(jt |xt , x

q
t−1

, θ)

G(xt |µj,t , σ
2
j,t)dxt , though the integral can be made approximately. Second, the calcula-

tion needs to know xt. Getting ⌢xt from knowing xt is applicable to a filtering problem 
that gets a smoothed or filtered version from xt, but it is not applicable to a prediction 
problem that targets at getting ⌢xt from its past observations.

Instead, we use a predictive P(jt |x
q
t−1,ϕ) based on the immediate past observations 

x
q
t−1 to combine the prediction of individual prediction model adaptively; that is, we 

have

which summarizes extensions of the AR, ARMA, ARCH and GARCH models with the 
help of the mixture-of-experts (ME). In the implementation of the original ME (Jacobs 
et al. 1991; Jordan and Xu 1995), P(j|xqt−1,ϕ) is called the gating net and given as follows:

 with g1
(

x
q
t−1,ϕ

)

, . . . , gk
(

x
q
t−1,ϕ

)

 being the output of multilayer networks.
In an implementation of an alternative ME model (Xu et al. 1994, 1995), we consider a 

predictive Bayesian posteriori 

For the AR, ARCH and GARCH models, we further have 

(8)

P(jt |xt , jt−1, x
q
t−1, θ) =

qjt |jt−1G(xt − µjt ,t |0, σ
2
jt ,t

)
∑k

jt=1 qjt |jt−1G(xt − µjt ,t |0, σ
2
jt ,t

)
,

j∗t = argmaxjP(j|xt , jt−1, x
q
t−1, θ) or j

∗
t = argmaxj[qj|jt−1G(xt − µjt ,t |0, σ

2
jt ,t

)].

(9)
⌢
xt
(

x
q
t−1, θ

)

=

∫

xtp(εt |x
q
t−1, θ) dxt =

k
∑

i=1

αiµi,t ,

(10)

p(εt |x
q
t−1, θ) =

k
∑

jt=1

P(jt |x
q
t−1,ϕ)G(xt − µjt ,t |0, σ

2
jt ,t

),

⌢
xt
(

x
q
t−1, θ

)

=

∫

xtp(εt |x
q
t−1, θ) dxt =

k
∑

jt=1

P(jt |x
q
t−1,ϕ)µjt ,t ,

P(j|x
q
t−1,ϕ) = egj

(

x
q
t−1,ϕ

)

/

k
∑

j=1

egj
(

x
q
t−1,ϕ

)

,

(11)P(j|x
q
t−1,ϕ) =

αjq(x
q
t−1|ψj)

q(x
q
t−1|ψ)

, q(x
q
t−1|ψ) =

∑k

j=1
αjq(x

q
t−1|ψj).
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 To simplify the computation, we may consider the following approximation:

A further insight into Eq. (11) can be obtained at a setting that σj,t−1
2 = σj

2 and xt−1 = μj,t−1.; 
in this special case, we have a further simplification: 

which shares a similar concept to the mixture-using variance (MUV) and actually degen-
erates to this MUV (Perrone and Cooper 1993, Perrone 1994) when αj ∝ σ−1

j,t  . Another 
special case is that αi/σi,t is constant, and it follows from Eqs. (11) to (12) that we have 

by which we get the counterparts of NRBF and ENRBF (Xu 1998, Xu 2009).
The other choices of P(j|xqt−1,ϕ) may also be obtained or modified from Table 3 in Xu 

and Amari (2008). Moreover, similar to Eq. (8), it still follows from q(xqt−1|ψj) given by 
Eqs.  (11) and (12) that we may further incorporate the HMM model from Eq.  (7) into 
Eq. (11) and get 

Maximum likelihood, RPCL learning and learning with model selection

Typically, unknown parameters in the models in Eqs. (4), (8), (10) and (11) are estimated 
by the maximum likelihood (ML) learning, that is, the following maximization:

This maximization is implemented by the EM algorithm (Redner and Walker 1984), 
e.g., see the EM algorithms for finite mixture of AR models in Xu (1994, 1995a, b), finite 
mixture of GARCH models in Wong et  al. (1998), finite mixture of ARMA–GARCH 
models in Tang et al. (2003) and the original ME in Jordan and Xu (1995), as well as the 
alternative ME model, NRBF and ENRBF in Xu et al. (1994, 1995) and Xu (1998, 2009).

For an HMM mixture, we may also have the following approximate likelihood:

q(x
q
t−1|ψj) = q(xt−1|xt−2, . . . , xt−q)q(xt−2|xt−3, . . . , xt−q) · · · q

(

xt−q

)

.

(12)q(x
q
t−1|ψj) ≈ q(xt−1|xt−2, . . . , xt−q−1) = G(xt−1 − µj,t−1|0, σ

2
j,t−1).

(13)P(j|x
q
t−1,ϕ) =

αj/σj
∑k

j=1 αj/σj
,

(14)P(j|x
q
t−1,ϕ) = e

− 1

2σ2j,t−1

(xt−1−µj,t−1)
2
/

∑k

j=1
e
− 1

2σ2j,t−1

(xt−1−µj,t−1)
2

,

(15)P(jt |xt , jt−1, x
q
t−1,ϕ) = qjt |jt−1q(x

q
t−1|ψj)

/

∑k

j=1
qjt |jt−1q(x

q
t−1|ψj).

(16)

Θ∗ = arg max
Θ

L({xt}
N
t=1|Θ),

L({xt }
N
t=1|Θ) =



























































�

t
ln

k
�

jt=1

αjt G(xt − µjt ,t |0, σ
2
jt ,t

), (a) for finite mixture by Eq. (4),

�

t
ln

�

k
�

jt=1

P(jt |x
q
t−1,φ)G(xt − µjt ,t |0, σ

2
jt ,t

)

�

, (b) for ME by Eq. (10),

�

t
ln

�

k
�

jt=1

αjt q(x
q
t−1|ψjt )G(xt − µjt ,t |0, σ

2
jt ,t

)

�

, (c) for AME by Eq. (11),

ln

�

�

j1,...,jN

�

t
qjt |jt−1G(xt − µjt ,t |0, σ

2
jt ,t

)

�

, (d) for HMMmixture .
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One critical problem for the ML learning is that a good performance on a training 
set is not necessarily good on a testing set, especially when the training set consists of 
a small size of samples. The reason is that there may be too many free parameters. As 
introduced in the third section of Xu (2009), efforts on this problem are mainly fea-
tured by learning with model selection. Model selection refers to select a model with 
an appropriate complexity k . For the models considered in the previous subsection, k 
consists of the number of individual models, the autoregression order and the moving 
average order for each individual model. Typically, the ML learning is not good for 
model selection. However, whether the EM algorithm works well depends on whether 
an appropriate k is selected.

Classically, model selection is made in a two-stage implementation. First, enumerate a 
candidate set K of k and estimate a solution Θ∗

k for the unknown set Θk of parameters by 
the ML learning at each k ∈ K . Second, use a model selection criterion J

(

Θ∗
k

)

 to select 
a best k∗ . Several classical criteria are available for the purpose, such as AIC, CAIC and 
BIC/MDL, and readers are referred to Xu (2009, 2010) for a recent outline. Unfortu-
nately, any one of these criteria usually provides a rough estimate that may not yield a 
satisfactory performance. Even with a criterion J (Θk) available, this two-stage approach 
usually incurs a huge computing cost. Still, the parameter learning performance deterio-
rates rapidly as k increases, which makes the value of J (Θk) to be evaluated unreliably.

One direction that tackles this challenge is called automatic model selection, which 
is associated with a learning algorithm or a learning principle with the following two 
features:

•	 When there is an indicator ρ(θr) on a subset θr ∈ Θk , we have ρ(θr) = 0 if θr con-
sists of parameters of a redundant structural part.

•	 In implementation of this algorithm or principle, there is a mechanism that auto-
matically drives ρ(θr) → 0 as θr toward a specific value. Thus, the corresponding 
redundant structural part is effectively discarded.

An early effort along this direction is rival penalized competitive learning (RPCL) 
(Xu et al. 1992, 1993) for adaptively learning a model that consists of k substructures 
as follows:

where η > 0 is a learning step size and γ is a small positive number, e.g., γ = 0.005–0.01. 
With k initially at a value large enough, a current input sample xt is allocated to one of 
the k substructures via competition. The winner adapts to this sample by a little bit, while 
the rival is de-learned a little bit to reduce a duplicated allocation. This rival penalized 

(17)
L(xNt(t=1)|Θ) =

{
∑

t ln
∑k

jt=1 qjt |jt−1G(xt − µjt ,t |0, σ
2
jt ,t

), (i),
∑

t ln
{

∑k
jt=1 qjt jt−1q(x

q
t−1|ψjt )G(xt − µjt ,t |0, σ

2
jt ,t

)

}

, (ii).

(18)
θnewj = θoldj + pj,tη

∂πj,t

�

θoldj

�

∂θj
, pj,t =















1, j = c = argmaxjπj,t

�

θoldj

�

,

γ , j = argmaxj �=cπj,t

�

θoldj

�

,

0, otherwise.
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mechanism will discard extra substructures, making model selection automatically dur-
ing learning. Readers are referred to Xu (2007) for a recent overview and extensions.

Corresponding to Eq. (16), πj,t(θj
old) in Eq. (18) is given as follows:

For an HMM mixture, we may also approximately have

Another stream of automatic model selection is featured by those appropriate prior-
based efforts. By a Laplace prior in a regression task, sparse learning or Lasso shrinkage 
prunes away extra weights (Williams 1995; Tibshirani 1996). For pruning away Gaussian 
components on Gaussian mixture, a Jeffreys priori is used in the implementation of the 
minimum message length (MML) that minimizes a two-part message for a statement of 
model and a statement of data encoded by that model (Figueiredo and Jain 2002), and also 
Dirichlet–Normal–Wishart priories is added on Gaussian components in the implementa-
tion of the variational Bayes (VB) that computes a lower bound of the marginal likelihood 
(McGrory and Titterington 2007).

However, these efforts highly depend on choosing an appropriate prior, which is 
usually a difficult task, while an inappropriate prior may deteriorate the performance 
of model selection seriously. Without any priors on the parameters, VB and MML all 
degenerate to the maximum likelihood learning, while the RPCL learning is still capable 
of automatic model selection. Firstly proposed in Xu (1995a, b) and systematically devel-
oped over a decade and half (Xu 2001, 2007, 2010, 2012), the third stream of efforts has 
been made under the name of Bayesian Ying–Yang (BYY) harmony learning. The BYY 
harmony learning shares a mechanism similar to the RPCL learning. Also, the perfor-
mances of BYY harmony learning can be further improved by incorporating appropriate 
priors. Further details about the BYY harmony learning are referred to “Bayesian Ying–
Yang harmony learning and two exemplar learning algorithms” section, where a tutorial 
is also provided on one BYY harmony learning algorithm for alternative mixture-of-
experts-based GARCH models.

Dynamic trading and portfolio management
Dynamic trading by supervised learning and reinforcement learning

Instead of building a mathematical model for understanding and forecasting time series, 
studies of neural networks and machine learning in economics and finance started to 
shift from nonlinear forecasting modeling to adaptive trading and dynamic portfolio 
management (Neuneier 1996; Choey and Weigend 1997; Xu and Cheung 1997; Moody 
et  al. 1998; Hung et  al. 2000; Moody and Saffell 2001; Hung et  al. 2003; Chiu and Xu 
2004b; Jangmin 2006). Efforts on portfolio management will be addressed in the next 
subsection. In the sequel, we introduce efforts on learning dynamic trading based on 

(19)

πjt ,t

�

θjt
�

=











ln[αjt G(xt − µjt ,t |0, σ
2
jt ,t

)], (a) for finite mixture by Eq.(4),

ln[P(jt |x
q
t−1,ϕ)G(xt − µjt ,t |0, σ

2
jt ,t

)], (b) for ME by Eq.(10),

ln[αjt q(x
q
t−1|ψjt )G(xt − µjt ,t |0, σ

2
jt ,t

)], (c) for AME by Eq.(11)

.

(20)

πjt ,t

(

θjt
)

=

{

ln[qjt |jt−1G(xt − µjt ,t |0, σ
2
jt ,t

)], (i) for HMMmixture by Eq.(8),

ln[qjt |jt−1q(x
q
t−1|ψjt )G(xt − µjt ,t |0, σ

2
jt ,t

)], (ii) for HMM AME by Eq.(15).
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one single time series, with the help of supervised learning, reinforcement learning and 
Sharpe ratio maximization.

Given a sequence x1,  …,  xt, e.g., the sequence of one asset, Gold, FOREX index,…, 
etc., at any time point t ≤ τ we may infer a sequence Ip1 , . . . I

p
t  each Ipτ  being the following 

desired trading signal:

based on a trading strategy (e.g., maximum return) or an external expertise.
The task of learning decision, as illustrated by Box 1 in Fig. 2, can be formulated as a 

nonlinear regression model:

where f
(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,Θ

)

 is implemented by an ENRBF network in Xu & Cheung 

(1997). Also, it can be implemented by three-layer neural networks. Supervised learning 
is used to determine the unknown parametric Θ by minimizing 

where XFt
q may be directly a number of past observations {xt−τ}q

t=1 or certain features 
{Ft

(i)} extracted from{xt−τ}q
t = 1, e.g., Ft

(i) may be MACD, RSI, %K, %D, as well as features 
from candlestick charts and configurations from waves, etc. Also, we may put both 
together to consider XFq

t =
{

{xt−τ }
q
t=1,

{

F
(i)
t

}}

.

One key problem is how to keep a good generalization ability by training with a small 
length of sequence x1, …, xt. One way is adding some regularization term E2(Θ) + λΓ(Θ). 
Without a priori knowledge, however, it is not an easy task to get an appropriate term 
Γ(Θ) and its strength λ. The other way is to describe the model as follows:

with Ipt = [z
(1)
t , z

(2)
t , z

(3)
t ]T, z

(2)
t = 0 or 1 and zt

(1) + zt
(2) + zt

(3) = 1. Correspondingly, min ΘE2(Θ)  
is replaced by maximizing the likelihood L(Θ) =

∑

t
lnq(I

p
t |f (XF

q
t , {I

p
t−τ }

q
t=1,Θ)) . In the 

formulation, learning regularization may be implemented via Bayesian learning with 
help of a priori distribution q(Θ), i.e., max Θ[L(Θ) + lnq(Θ)]. For a better generalization 
ability, we may also put q(It

p|f(XFt
q,  {Ip

t−τ}q
t=1, Θ)) into a Bayesian Ying–Yang system and 

making BYY harmony learning with automatic model selection; see Sect.  4.4 in Xu 
(2010).

(21)Ipτ =







+1, to buy,
−1, to sell,
0, no action,

(22)Ĩ
p
t =

1− e
−f

(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)

1+ e
−f

(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)

(23)E2(Θ) =
∑

t

[I
p
t − f (XF

q
t , {I

p
t−τ }

q
t=1,Θ)]2,

(24)

q
(

Ĩ
p
t | XF

q
t ,
{

I
p
t−τ

}q

t=1
,�

)

=
exp

[

z
(1)
t f (1)

(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)

+ z
(2)
t f (2)

(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)]

1+ exp
[

f (1)
(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)]

+ exp
[

f (2)
(

XF
q
t ,
{

I
p
t−τ

}q

t=1
,�

)]

f (XF
q
t , {I

p
t−τ }

q
t=1,�) = [f (1)(XF

q
t , {I

p
t−τ }

q
t=1,�), f (2)(XF

q
t , {I

p
t−τ }

q
t=1,�)]T,



Page 13 of 42Xu ﻿Appl Inform            (2018) 5:11 

The other key problem is how to make a pre-processing stage for getting a desired 
sequence Ip1 , . . . , I

p
t  , which can be obtained automatically by a trading strategy, e.g., get-

ting a profit and cutting a loss beyond a pre-specified threshold as follows:

where σt is an estimation of the volatility about this asset. Also, Ip1 , . . . , I
p
t  may come from 

an outcome of market technical analysis, which is difficult to get Ip1 , . . . , I
p
t  adaptively in 

a dynamic trading.
From the studies (Moody et al. 1998; Moody and Saffell 2001; Jangmin 2006), Ip1 , . . . , I

p
t  

is a sequence of actions that are dynamically learned by reinforcement learning. Typically, 
a reinforcement learning model consists of a set S of environment states (e.g., differences 
in the current price of asset and the volumes in holding) and a set A (e.g., buy, sell, no 
action) of actions. There is also a policy π that chooses an action at ∊ A at an environ-
ment state st. The action at makes the environment move to a new state st+1. Associated 
with the transition (st, at, st+1), there is a scalar immediate reward rt+1(st, at, st+1) that is 
estimated according to a utility function, e.g., a maximum profit. The goal is to collect as 
much reward as possible by determining a sequence of actions a1, …, at.

In the literature of reinforcement learning, one popular approach is called Q-learning, by 
which at is chosen according to a table Q(st, at) that is learned from rt+1(st, at, st+1). For a 
dynamic trading, the S of environment states are featured by differences in the current price 
of asset and the volumes in holding. Quantizing the differences into the states is not an easy 
task. Also, there will be a large number states to be considered. As a result, we need to learn 
a large Q(st, at) table, which not only increases computing cost rapidly, but also makes the 
problem of a small sample size become more serious because Q(st, at) consists of too many 
free parameters to be determined. Instead of Q-learning, the action at in rt+1(st, at, st+1) can 
be approximately replaced by the value of It

p given by Eq. (22) such that rt+1(st, at, st+1) is 
replaced by an expression rt+1(st, st+1, {xt−τ}q

t=1, {Ip
t−τ}q

t=1, Θ). As a result, the maximization of 
∑ ∞t=1γtrt+1(st, at, st+1) with respect to a sequence of discrete actions a1, …, at is replaced by 
the maximization of ∑ ∞t=1γtrt+1(st, st+1, {xt−τ}q

t=1, {Ip
t−τ}q

t=1, Θ) with respect to Θ. Similar to 
learning regularization, the problem of a small sample size may also be handled by adding a 
a priori term, e.g., 

∑∞
t=1 γ

t rt+1

(

st , st+1, {xt−τ }
q
t=1,

{

I
p
t−τ

}q

t=1
,Θ

)

+ �lnq(Θ).

The last but not the least, the specific expression of rt+1(st,  at,  st+1) is an important 
practical issue, related to the current price of asset, the volume in holding, the transac-
tion cost and the tax, as well as personal preference. There could be a number of choices. 
See Fig. 2 by Box 3; a widely used one is the Sharpe ratio, which is originally suggested 
for evaluating the goodness of an asset in market by a ratio of the excess asset return 
(i.e., after minus the benchmark return) over the standard deviation of the excess asset 
return (Sharpe 1966, 1994). For dynamic trading, it is not the Sharpe ratio of the asset 
in market that has to be calculated, but the Sharpe ratio of the dynamic trading system, 
which depends on a sequence of actions a1, …, at.

I
p
t =







+1, if (xt − xt−1)
�

σt ≥ g+0 > 0,

−1, if (xt − xt−1)
�

σt ≤ g−0 ≤ 0,
0, no action,
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Dynamic portfolio management by maximizing Sharpe ratio and extensions

Instead of only considering one single asset, a common and more reliable practice is con-
sidering a portfolio of assets, and thus portfolio management is one important topic in the 
finance literature. For the supervised learning by Eq. (22), its extension can be made simply 
by considering Ipj,t(XF

q
t , {I

p
j,t−τ }

q
t=1,Θj), j = 1, . . . , k with each in the format of Eq. (22), and 

learning is made by minimizing the total sum ∑ jE2(Θj). Simply, we get the training signals 
I
p
j,1, . . . , I

p
j,t per asset individually. Still, further studies are needed on how to get the train-

ing signals bases on the whole portfolio of assets. Conceptually, extension of reinforcement 
learning to multiple assets is rather straightforward too. However, both the set S of envi-
ronment states and the set A of possible actions increase rapidly, which makes learning a 
large table Q(st, at) seriously suffer the problem of a small sample size. Thus, it becomes 
more critical to get a1,  …,  at to be approximately replaced by {Ip

j,t(XFt
q,  {Ip

j,t − τ}q
t=1,  Θj)}k

j=1  
in evaluating the reward rt+1 (Moody et  al. 1998; Moody and Saffell 2001). Similar to 
supervised learning, one direction for tackling the problem of a small sample size is incor-
porating with learning regularization.

Alternatively, another direction to pursuit portfolio management is exploring the road 
pioneered by the Markowitz portfolio theory (Markowitz 1952), see Box 2 in Fig. 2. By 
this theory, the return of an investment portfolio is the proportion-weighted combina-
tion of the constituent assets’ returns, while the portfolio volatility is a function of the 
correlations between the component assets. The portfolio expected return is maximized 
subject to a given amount of portfolio risk, or equivalently risk is minimized for a given 
level of expected return. Moreover, the Markowitz mean–variance scheme also leads to 
the suggestion of Sharpe ratio (Sharpe 1966, 1994), which is typically used to evaluate 
the performance of a portfolio.

In both the standard Markowitz mean–variance scheme and Sharpe ratio approach, a 
risk is defined as the return variance, which has been subsequently realized that the vari-
ance is not an appropriate measure because it counts the positive fluctuation above the 
expected returns (also called upside volatility) as a part of the risk. See Box 4 in Fig. 2; 
the downside risk thus becomes a topic to study. Markowitz (1959) counts the volatil-
ity below the expected returns only. Fishburn (1977) makes a mean-risk analysis with 
risk associated with below-target returns and proposes a more sophisticated measure of 
risk associated with below-target return, which has been further refined by Sortino and 
Meer (1991). Basically, this downside risk is the volatility of return below the minimal 
acceptable return (also called target return G).

Moreover, the downside risk of a single asset has been extended into the following 
covariance (Hung et al. 2000, 2003):

for the returns rj , j = 1, . . . , k of multiple assets. Also, we have the following matrix for 
the upside volatility:

(25)downVγ (G) =

∫ G

−∞

(G − r)γ dF (r)

(26)D =
[

di,j
]

, di,j =

G
∫

−∞

G
∫

−∞

(G − ri)
γ
2 (G − rj)

γ
2 p(ri, rj) dridrj ,
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The sprit of the Markowitz theory and the Shape ratio, i.e., maximizing the expected 
returns while minimizing the risk, is reasonably modified into one extended Sharpe ratio 
featured by maximizing both the expected returns and the upside volatility while mini-
mizing the downside risk; see Box 5 in Fig. 2. In Hung et al. (2000, 2003), this generaliza-
tion is implemented by the following maximizaon:

As shown in Fig. 4, we use the parameters H, B to adapt the investor’s preference. 
The parameter H represents a strength of maximizing upside volatility and B repre-
sents a strength of diversification or regularization. The term wT(1− w) is a diver-
sification term that reaches its minimum when one wi is 1 and others are 0, and its 
maximum when all the elements w are equal.

It has been experimentally shown that this generalization of Sharpe ratio can effec-
tively reduce the risk while obtaining great returns, in comparison with the stand-
ard Markowitz mean–variance scheme and Sharpe ratio. Moreover, investors expect 
a constant return with a minimum downward risk, for which we can simply set 
wTEr = rspec , while the others expect a maximum return under a constant downward 
risk, for which we can simply set wTDw = vspec.

(27)U =
[

ui,j
]

, ui,j =

+∞
∫

G

+∞
∫

G

(ri − G)
γ
2 (rj − G)

γ
2 p(ri, rj) dridrj .

(28)

Max
w

[

wTEr +HwTUw

wTDw
+ BwT(1− w)

]

, 1 = [1, . . . , 1]T,

r =
[

r1, . . . , rk ]
T,w =

[

w1, . . . ,wk ]
T,

k
∑

i=1

wi = 1, wi ≥ 0.

Fig. 4  Use of the parameters H, B 
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In Sect III(C) of Xu (2001), several developments have been proposed along this 
direction. First, a more practical scenario is considered, featured with a portfolio of 
risk securities with returns rj,t , j = 1, . . . , k , a risk-free bond with return rf and trans-
action cost with a rate rc. That is, rt = wTr is replaced by 

where each wj,t may be nonnegative as in Eq. (28). In this case, short of a risk security 
is not permitted but borrowing from the risk-free bond is allowed, i.e., we can have 
1 − α0 < 0. Also, we may allow a negative wj,t, i.e., short of a risk security is permitted.

Second, instead of considering EwTr = wTEr and E
[

wTr − EwTr
][

wTr − EwTr
]T 

for the expected return and its volatility, we compute their estimations directly from 
samples RT = {rt,  t = 1,  …,  T} within a time window. Accordingly, it follows from 
Eq. (25) that we get the counterpart of Eq. (28) as follows:

where #S denotes the cardinality of the set S, and the parameter βV ,βw are the coun-
terparts of H,  B  in Eq.  (28). Moreover, D(w) is a diversification term that reaches its 
minimum when one wi is 1 and the others are 0, and reaches its maximum when all 
the elements w are equal. There could be several choices for D(w) . One example is 
wT(1− w) in Eq. (28) or equivalently −wTw . One other example is 

Moreover, M(RT )

/

γ

√

VD
G (RT ) is a ratio which is also an improvement over 

wTEr/wTDw in Eq. (28), and actually wTEr/wTDw is not really a ratio. Third, instead 
of directly searching the parameters α0,wt , we may let 

(29)

rt = (1− α0)r
f + α0

k
�

j=1



wj,t rj,t − rc

k
�

j=1

�

�wj,t − wj,t−1

�

�

�

1+ rj,t
�





= (1− α0)r
f + α0

�

wT
t rt − rcδw

T
t (1+ rt)

�

,α0 > 0,wT
t 1 = 1,

δwt =
�
�

�w1,t − w1,t−1|, . . . ,|wk ,t − wk ,t−1

�

�

�T
,

(30)

Sp =
M(RT )

γ

√

VD
G (RT )

+ βV

γ

√

VU
G (RT )

γ

√

VD
G (RT )

+ βwD(w), M(RT ) =
1

T

T
∑

t=1

rt ,

VD
G (RT ) =

1

#(rt ≤ G)

∑

rt≤G

(G − rt)
γ ,VU

G (RT ) =
1

#(rt > G)

∑

rt>G

(rt − G)γ ,

(31)D(w) = −

k
∑

j=1

wj,t ln wj,t ,

k
∑

j=1

wj,t = 1, wj,t ≥ 0.

(32)
α0 = e−g(rt ,ψ),wj,t =

ef
(j)(rt ,ϕ)

∑k
i=1 e

f (i)(rt ,ϕ)
,

f (rt ,ϕ) =
[

f (j)(rt ,ϕ), . . . , f
(j)(rt ,ϕ)

]T
,
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with g(rt ,ψ), f (rt ,ϕ) implemented by neural networks, e.g., an ENRBF network. In the 
next section, we will show that a portfolio of security returns rt may also be modeled by 
a temporal extension of arbitrage pricing theory such that rt is mapped into inner factor 
yt with a much lowered dimension. Instead of depending on the security returns rt , we 
use yt to replace rt in Eq. (28) for a further improvement.

Following the extension proposed in Xu (2001), most of the above addressed exten-
sions have been investigated together with detailed algorithm, experiments on real 
market data and comparative studies (Chiu and Xu 2002b, 2003, 2004b). Still, at the 
end of Sect III(C) in Xu (2001), there was one briefly introduced idea that has not 
been further investigated yet. Here, some further details are addressed.

In Eq.  (30) and also in Eq.  (28), as well as in the existing studies on the Markow-
itz portfolio optimization and the Sharpe ratio, the expected return and volatilities 
are nonparametric estimates directly from samples RT = {rt , t = 1, . . . ,T }. To cap-
ture a temporal dependence better, one idea is using an ARCH or GARCH model to 
describe a sequence {rt, t = 1, …, T} of the portfolio return rt = wT

t rt; see Box in Fig. 2. 
It follows from Eq. (3) that we have 

Taking the expectation and separating the first term from the rest, as well as approxi-
mately considering EwT

t rt ≈ a1w
T
t rt , we further get 

from which we get the following GARCH-based Shape ratio 

Given the GARCH model and the past Ert−j , rt−j , j = 1, . . . , k , we have Er̂t−1, σ̂ 2
t , 

rt
AR, a1, β1 available. As rt is obtained, we compute the gradient of J (wt) and update 

Then, we get ε2t = (wT
t rt − rARt )2 and update a

new
i

= e
c
new
1 , cnew

i
= c

old
i

− η
dε2

t

dcold
i

,

for i = 0, 1, anewj = aoldj − η
dε2t
daoldj

, for j = 2, . . . , q.

Also, we update the parameters ϑ in the same way as one standard GARCH solving 
approach. Next, we use Eq. (36) for updating wt+1 again.

(33)rt+1 = a0 +

q
∑

j=1

ajrt+1−j + σtεt , εt ∼
i.i.d. G(ε|0, 1), and σt = σ 2

t (ϑ) by Eq. (3).

(34)

Ert+1 = a0 +

q
∑

j=1

ajErt+1−j = a1Ew
T
t rt + Er̂t−1 ≈ a1w

T
t rt + Er̂t−1,

σ 2
t+1 = σ 2

0 +

q
∑

i=1

βiε
2
t+1−i +

p
∑

j=1

ωjσ
2
t+1−j = β(wT

t rt − rARt )2 + σ̂ 2
t , r

AR
t = a0 +

q
∑

j=1

ajrt−j ,

Er̂t−1 = a0 +

q
∑

j=2

ajErt+1−j , σ̂
2
t = σ 2

0 +

q
∑

i=2

βiε
2
t+1−i +

p
∑

j=1

ωjσ
2
t+1−j ,

(35)J (wt) =
Ert+1

σt+1
=

a1w
T
t rt + Er̂t−1

β1(w
T
t rt − rARt )2 + σ̂ 2

t

.

(36)wt = wt−1 + η∇wt J (wt), for a learning step size η > 0.
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Market modeling: APT theory and temporal factor analysis
Arbitrage pricing theory and factor analysis’s incapability

Beyond only optimizing the outcome by investing a portfolio of multiple assets, the 
Markowitz mean–variance scheme also leads to the linear modeling of the market. The 
most famous one is the well-known capital asset pricing model (CAPM) (Sharpe 1964). 
However, the CAPM is criticized as being not sufficient to describe market behavior 
merely via one endogenous factor.

Under the name of arbitrage pricing theory (APT), Ross (1976) proposed the following 
linear model of multiple hidden or endogenous factors: 

As illustrated in Fig. 5a, rt consists of the returns of k assets in this market, f t con-
sists of m risky hidden factors that will affect the rate of returns on all assets by differ-
ent degrees of sensitivity and aij is the sensitivity of the ith asset to factor j, also called 
factor loading, Moreover, each element of et is the risky asset’s idiosyncratic random 
shock with mean zero, and each element of a is a constant part of the corresponding 
risky asset.

Since its inception, the APT has attracted a considerable interest as a tool for inter-
preting investment results and controlling portfolio risk. However, the APT has been 
accepted by the investment community, but is not as popular as the CAPM. The 
reason largely  relates to APT’s serious drawback, namely, its implementation is dif-
ficult due to the lack of specificity regarding the nature of the factors that systemati-
cally affect asset returns. As outlined in Sect. I of (Xu 2001), typically three types of 
approaches have been applied for the APT implementation.

Most of the studies are featured with f t given by the so-called fundamental factors, 
i.e., historic time series of a set of macroeconomic or fundamental indexes. With the 

(37)

rt = a+Af t+et ,A =
[

aij
]

, rt = [r1,t , . . . , rk ,t ]
T, f t =

[

f1,t , . . . , fn,t ]
T, et =

[

e1,t , . . . , ek ,t ]
T.

Fig. 5  Arbitrage pricing theory and factor analysis
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hidden factors chosen, the problem becomes a typical multivariate linear regression 
problem: rt = a + Af t + et . However, choosing these fundamental factors is not an 
easy task. Chen et  al. (1986) chose five macroeconomic factors, including surprises 
in GDP, inflation, investor confidence, and yield curve. Also, others consider index 
or spot or future market price, e.g., short-term interest rate, a diversified stock index, 
oil price, gold or precious metal prices, and currency exchange rate in place of mac-
roeconomic factors. With efforts over decades, little progress has been achieved on 
identifying the number and nature of these fundamental factors. Many researchers 
believe that this issue is essentially empirical in nature, because the factors change 
over time and between economies.

There have been also efforts under the name of the cross-sectional approaches that 
observes the correlations of all the assets of rt to each of the hidden factor in f t by a 
certain period, resulting in estimates of elements of A that reflect the assets’ sensitivi-
ties to these hidden factors. Then, the task is to estimate f t upon rt and A, which is 
typically handled as a linear cross-sectional regression and solved by the least square 
error method in the literature of economics and finance. In Sect. I of Xu (2001), it is 
formulated as an inverse mapping problem, a topic that has been widely studied in the 
neural network and machine learning literature.

Observation of an implementation of the least square error method actually shows that 
the residuals et are uncorrelated among the elements and also with the factors f t and 
that each element of et reflects a collective effect of many random noise, that is, we have 
Ef te

T
t = 0 and also q(rt |f t) as shown by the top-down pathway on the right part of Fig. 5b. 

An inverse of the top-down path is a bottom-up path on the left part of Fig. 5b, for which 
the optimal solution is the following Bayesian inverse: 

Here, we encounter a probabilistic structure q
(

f t
)

 of hidden factors. Approximately, if 
only considering its statistics up to the second order, q

(

f t
)

 is approximated by a Gaussian 
G
(

f t |ν,Λ
)

 as shown in Fig. 5b. In such a case, we have the following analytical solution:

which returns to a least square error solution when there is no information about q
(

f t
)

 
for which we may simply set Λ = 0, ν = 0.

Similar to the first approach, the second approach is also essentially empirical in nature, 
which needs not only a manual help to identify the number and nature of hidden factors, 
but also at least an enough long period of historic data about factors for estimating of ele-
ments of A. Moreover, getting elements of A by the correlations between f t upon rt actually 
imposes additional constraints on the values that A may take. The second approach is sup-
plementary to the first approach, but it still cannot get rid of the nature that the factors are 
chosen heuristically and even rather arbitrarily. We may regard that the second approach 
actually consists of two steps. First, estimation of elements of A bases on a period historic 
data of macroeconomic or fundamental indexes takes the same role of the first approach or 

(38)p(f t |rt) =
G(et |a + Af t ,Σ)q

(

f t
)

∫G(et |a + Af t ,Σ)q
(

f t
)

df t
.

(39)f̂ t = ∫ f tp(f t |rt) df t =
(

ATΣ−1A+Λ−1
)[

ATΣ−1(rt − a)+Λ−1ν

]

,
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even just an implementation of the first approach. Second, we estimate f t upon rt and A, 
e.g., typically by Eq. (39).

The third type of efforts are called factor-analytic approach, attempting to use a statistical 
approach called factor analysis (FA) to get both the unknown and the unknown factors esti-
mated from the observed return series {rt} . There is no need of external heuristics, and thus 
it seems more appealing. As shown in Fig. 5b, an FA model comes from modifying Fig. 5a 
with an additional structure that f t comes from a Gaussian G

(

f t |ν,Λ
)

 with a diagonal Λ 
or even Λ = I . Unfortunately, empirical tests showed that factor analysis does not explain 
economic variables well. As addressed in Sect. I of Xu (2001), some incapability of factor 
analysis mainly comes from two kinds of intrinsic indeterminacy. One is the rotation inde-
terminacy, i.e., 

while such a rotation may lead to a solution far from the correct one. The other comes 
from an intrinsic indeterminacy of an appropriate number of factors, while the selection 
of a correct number of factors is essential to the performance of using the APT model. 
Usually, it is set by a rule of thumb. Actually, factor analysis also suffers other types of 
indeterminacy. One is any rescaling Df t of a solution f t is still a solution for a diago-
nal matrix D, which is not critical because it reserves the waveform of each element in 
f t . The other is additive indeterminacy, i.e., A, Λ, Σ and A*, Λ*, Σ*are both the solutions 
as long as AΛAT + Σ = A*Λ*A*T + Σ*. However, the effect of this indeterminacy can be 
reduced significantly when Σ = σ2I. Therefore, our attention should be mainly on the first 
two key challenges, namely, removing the rotation indeterminacy by Eq. (40) and deter-
mining an appropriate number of factors.

The first challenge has been seldom considered by the APT studies in the fields of 
economics and finance, while there are some efforts on the second challenge, i.e., 
determining an appropriate number of factors with the help of statistical testing. The 
simplest one is making maximum likelihood factor analysis (MLFA) followed by the 
likelihood ratio (LR) test, shortly MLFA-LR. Empirical evidences show that the mini-
mum number of factors accepted by the LR test tends to increase with the number 
of securities. Alternatively, Chamberlain and Rothschild (1983) suggest analyzing 
eigenvalues of the population covariance matrix, shortly eigenvalue approach. Still, 
Brown (1989) empirically found that this approach biases toward too few factors and 
the result consistent with one factor may be equally consistent with multiple equally 
weighted factors.

On one hand, being essentially empirical in nature, both the fundamental factor-
based approaches and the cross-sectional approaches rely on pre-knowledge or exter-
nal beliefs to choose the factors heuristically, in lack of consensus and consistency 
over what should be the real factors in APT. On the other hand, the implementation 
of factor analysis suffers the rotation indeterminacy by Eq.  (40) and the difficulty of 
determining an appropriate number of factors. These problems incur for criticisms on 
the APT theory, e.g., see Dhrymes et al. (1984); Abeysekera and Mahajan (1987).

Instead of doubting the incorrectness of the APT theory, our understanding is that 
the APT theory is correct but incomplete. The APT suggests to model a market at no 
arbitrage equilibrium by a linear model, which is justifiable. However, this theory is 

(40)ifA, f t is a solution, Aϕ
T,ϕf t is also a solution for any rotation matrix ϕ,
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incomplete because this linear model cannot be uniquely or even reasonably specified 
merely from the observed return series {rt} . To complete the theory, further specifica-
tion should be imposed on the components of this model. The fundamental factor-
based approaches fix the hidden factors by heuristically and empirically picking a set 
of macroeconomic or fundamental indexes, which removes the indeterminacy but 
leaves the difficult questions on how to choose these factors and whether the factors 
should come directly from macroeconomic or fundamental indexes. The cross-sec-
tional approaches aim at estimating A , which leaves the difficult question on how A 
can be estimated correctly. To get A by the assets’ sensitivities to these hidden factors, 
we still need to heuristically and empirically pick a set of macroeconomic or funda-
mental indexes, Finally, the FA model is also unable to remove the incompleteness of 
the APT, because imposing an additional Gaussian G

(

f t |ν,Λ
)

 is still not enough to 
remove the critical indeterminacy by Eq. (40). In a summary, the original APT (Ross 
1976) is reasonable but incomplete, and further efforts should explore how to add 
certain structure to remove or remedy the incompleteness.

Temporal factor analysis and temporal APT

The famous CAPM model is featured by one factor that is not a manually chosen 
exogenous macroeconomic or fundamental index but an invisible and intrinsic mar-
ket indicator. The APT was motivated by following the basic sprit of CAPM to answer 
the criticism that merely one factor is not enough to describe the market behavior. 
However, implementing APT by manually picking macroeconomic or fundamental 
indices actually deviates from the original  motivation. Encouragingly, the direction 
of FA implementation is still consistent with the original motivation that seeks intrin-
sic factors, and thus we further proceed along this direction. Keeping Eq.  (37), we 
extend the Gaussian structure G

(

f t |ν,Λ
)

 into a better structure such that the indeter-
minacy by Eq. (40) or the incompleteness of the FA model can be removed or at least 
remedied.

Temporal factor analysis (TFA) is such a further development of FA; see Box 1 in 
Fig. 3. The early study was started in 1997, firstly introduced briefly by Xu (1997) and 
further addressed in Xu (2000) (this manuscript actually reached the editorial office 
also in 1997). See Box 2 in Fig. 3: the key idea is modifying Eq. (37) as follows:

That is, the first-order autoregressive dependence is added to each factor in f t via 
B, and Eq. (41) returns to FA by Eq. (37) when B = 0.

It is this temporal dependence that removes the rotation indeterminacy by Eq. (40); 
see Sect IV (A) in Xu (2000) and Sect. II in Xu (2002). Roughly, the following points 
may be understood:

(41)

rt = a + Af t + et ,A =
[

aij
]

, rt = [r1,t , . . . , rk ,t ]
T,

f t =
[

f1,t , . . . , fn,t ]
T, et =

[

e1,t , . . . , ek ,t ]
T, E fte

T
t = 0,

f t = Bf t−1 + εt ,B = diag[b1, . . . , bm] �= bI with b �= 0,

εt ∼ G(εt |0,Λ) with a diagonalΛ, E ft−1ε
T
t = 0.
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•	 For any diagonal matrix D, we have Af = Ãf̃ , Ã = AD, f̃ = D−1f , which keeps the 
format rt = a + Af t + et unchanged and also the elements of f̃  remain mutually 
independent. i.e., Equation (37) has an indeterminacy of unknown scaling on fac-
tors of f̃  . Thus, we may simply consider f t ∼ G

(

f t |0, I
)

 . For any rotation matrix 
φ with ϕTϕ = I  , we have Af = Ãf̃ , and Ã = AϕT, f̃ = ϕf  with f̃t ∼ G

(

f̃t |0, I
)

 . 

That is, Eq. (37) has also an indeterminacy of unknown rotation on factors f̃ .
•	 For any diagonal matrix D, we also have D−1f t = D−1BDD−1f t−1 + D−1εt and 

f̃ t = Bf̃ t−1 + ε̃t , , where ε̃t = D−1εt comes from G
(

ε̃t
∣

∣0,D−1ΛD−1
)

 and D−1ΛD−1 
is still diagonal. That is, Eq.  (41) still has an indeterminacy of unknown scaling 
on factors f̃  . Again, we may consider εt ∼ G(εt |0, I ). For any rotation matrix φ 
with φTφ = I, we have f̃ t = B̃f̃ t−1 + ε̃t with ε̃t ∼ G(ε̃t |0, I ) , while B̃ = ϕBϕT is no 
longer diagonal and even B is diagonal. If B̃ = ϕBϕT is required to be diagonal, the 
only rotation matrix is φ = I and thus the rotation indeterminacy is removed.

Still there is an indeterminacy of unknown scaling on factors of f̃  , but it will not 
change the waveform of f1,t,  …,  fn,t. Also, we may normalize each factor to remove 
such indeterminacy.

In Xu (2001), the TFA by Eq. (41) is thus suggested as a refinement of the original 
APT theory, by which the original part of APT is kept without modification, while 
a temporal structure f t = Bf t−1 + εt is added such that the incompleteness caused 
by the rotation indeterminacy has been removed. Such a refinement may be called 
temporal APT in a sense that temporal relation is taken into consideration of market 
modeling. That is, a static equation by Eq.  (37) is not enough to describe a market 
equilibrium, but a temporal structure should be an important ingredient of a market 
equilibrium.

Why is an AR model of merely order one f t = Bf t−1 + εt considered as this tem-
poral structure? First, we consider that hidden factors f t are driven by Gaussian noise 
εt ∼ G(εt |0,Λ), following a general consensus that the noisy component in most econo-
metric and statistical models is Gaussian distributed. The rationale comes from the cen-
tral limit theorem which implies that the compounding of a large number of unknown 
distributions will be approximately normal. Second, the first-order AR model can be 
attributed to the weak form of efficient market hypothesis (EMH), that is, stock price 
today is conditionally independent of all previous prices given the price of yesterday. 
Third, though observable economic indices are seldom independent, it cannot rule out 
that hidden factors that denominate a market equilibrium are mutually independent. 
Instead, independent factors may help to make market equilibrium simpler.

As addressed in the previous subsection, past efforts on determining an appropriate 
number of factors have not provided much support on the APT. For one example, the 
MLFA-LR test shows that the number of factors tends to increase with the number of 
securities. For another example, the identification via eigenvalue approach (Chamberlain 
and Rothschild 1983) biases toward a smaller factor number. In one IJCNN 02 paper 
(Chiu and Xu 2002a), empirical tests on Hong Kong stock market data show not only 
that these two unfavorable biases are again observed, but also that the TFA-based APT 
can provide a reasonable answer to the number of factors in the Hong Kong stock mar-
ket. As shown in Fig. 6, the number of factors identified by MLFA-LR test varies as the 
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numbers of securities, while the number of factors identified by the eigenvalue approach 
is always 1. In contrast, BYY harmony learning based TFA stably identifies four or five 
factors regardless of the numbers of securities, which is quite consistent with the num-
ber identified via heuristic empirical analysis, e.g., in Chen et al. (1986).

The above introduced nature of TFA and preliminary studies suggest that there may 
need a renewed interest in the literature of finance and economics to further investigate 
APT and its further developments. To consider which topics to pursue, it is helpful to 
observe the differences of TFA from related methods.

First, f t = Bf t−1 + εt in Eq. (41) is actually a special type of the first-order vector AR 
(VAR). Being different from the conventional VAR that are used for capturing linear 
interdependencies among multiple time series (Sims 1980; Engle and Granger 1987), the 
TFA captures the interdependencies among multiple time series by rt = a + Af t + et 
and temporal dependences by f t = Bf t−1 + εt . As addressed in Sect. 3.2.1 in Xu (2012), 
it is more efficient to separately treat these two types of dependences.

Second, if we do not constrain B,Λ to be diagonal, Eq. (41) becomes a general state–
space model (SSM) or a linear dynamical system (LDS), which has been widely studied 
in the literature of control theory and signal processing. As outlined in Sect.  5.2.1 of 
Xu (2012), in a period that is more or less the same as the studies on TFA (Xu 1997; 
2000), there was a renewed interest on a general LDS, featured by using the EM algo-
rithm for parameter estimation under the ML learning (Ghahramani and Hinton 2000). 

Fig. 6  Comparison on finding the number of factors identified by MLFA-LR test, eigenvalue approach and 
BYY harmony learning-based TFA
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Accordingly, this EM algorithm was originally derived in the early 1980s and re-intro-
duced in the early 1990s (Shumway and Stoffer 1991). Neither these studies suggest 
using the LDS as a further development of APT, nor the notorious rotation indetermi-
nacy in Eq. (40) has been taken into consideration. On the contrary, more problems of 
indeterminacy than the FA are actually incurred in this general LDS model due to many 
extra free parameters, which makes identifiability even worse. For an example, applied 
to radar automatic target recognition based on high-resolution range profile, it has been 
shown in Wang et al. (2011) that the recognition performance of the general LDS is actu-
ally even inferior to that of the FA, while TFA obtains better performances than the FA.

Third, many efforts have been made on determining the factor number of FA in the lit-
erature of statistics and machine learning, typically in a two-stage implementation. The 
first stage uses the EM algorithm to make the ML learning for unknown parameters in 
the FA while the second stage selects an appropriate number of factors with help of a 
model selection criterion. In Tu and Xu (2011), a systematic comparative investigation 
has been made on a number of typical model selection criteria, including not only Akai-
ke’s AIC, Schwarz’s BIC, Bozdogan’s CAIC, Hannan–Quinn criterion, but also recent 
Minka’s PCA criterion, Kritchman and Nadler’s tests, and Perry and Wolfe’s rank, as well 
as the criterion obtained from the BYY harmony learning theory (Xu 2001).

As discussed above, there is not really a need to further consider the relations to 
VAR and LDS. Instead, further explorations may start from continuing the study in 
the IJCNN02 paper (Chiu and Xu 2002b) and proceed to clarify the following issues:

•	 Does using one of the above model selection criteria in a two-stage implementation 
improve the number of FA factors identified by the MLFA-LR test and the eigenvalue 
approach? If yes, does this improvement help the FA-based implementation of APT, 
even still suffering the rotation indeterminacy by Eq. (40).

•	 Still using one of the above model selection criteria in a two-stage implementation, 
how much improvement TFA can be obtained after removing the rotation indeter-
minacy by f t = Bf t−1 + εt?

Additionally, studies may be made on data from other major international markets, 
with those past empirical analyses (e.g., Chen et al. 1986; Azeez and Yonezawa 2006) as 
references. In addition to a two-stage implementation, one promising feature of imple-
menting the TFA by the BYY harmony learning (Xu 2001) is that the number of tem-
poral factors is determined automatically during learning, which saves computational 
costs greatly and also improves the learning performance of TFA, for which details are 
referred to Sect. 5 of Xu (2010) and Sect. 5.2 of Xu (2012).

Macroeconomics‑modulated TFA‑APT and nGCH‑driven M‑TFA‑O

In those empirical APT studies, the practice that uses macroeconomic indexes as f t leads 
to an understanding that f t typically consists of a set of macroeconomic or fundamental 
indexes. In an FA implementation or a TFA implementation by Eq.  (41), such an under-
standing may not be correct. Actually, f t may vary much slower than the return rt and thus 
be regarded as a macroeconomic type of indices. However, f t may also vary in a timescale 
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similar to the changes of rt . Moreover, f t in Eq. (41) is intrinsically determined from real 
data rt and usually will not coincide with exogenous macroeconomic indexes, such as GDP, 
inflation, investor confidence, and yield curve. Therefore, we need to further investigate 
how the market is influenced by these exogenous variables or macroeconomic indexes.

Being quite different from many existing studies that explicitly model the relation 
between market return rt and macroeconomic indices, the influences of these indices 
to rt are considered via their roles in modulating the temporal factors in f t , as shown in 
Fig. 3 by Box 3. This idea is realized via extending Eq. (41) into the following macroeco-
nomics-modulated TFA–APT:

where et , ɛt, and ηt are Gaussian white noises and independent of each other. Typically, 
mt consists of several macroeconomic indices, and νt consists of several known non-
market factors that affect the macroeconomy. Specifically, Hmt describes the effect of 
the macroeconomic indices to the security market via the hidden factors f t . Actually, 
Eq.  (42) comes from a simplification of one proposed in Sect. III(C) of (Xu 2001) and 
its Eq. (101), in particular, under the name of macroeconomics-modulated independent 
state–space model.

In one CIFEr2003 conference paper (Chiu and Xu 2003), empirical investigation is 
made on the model by Eq.  (42). First, white noise tests are made on et , ɛt, and ηt to 
ensure model specification adequacy. Second, the performances in return prediction 
and index forecasting are compared with that of the TFA model. Empirical results 
reveal that the model is not only well specified, but also superior to the TFA model in 
stock price and index forecasting.

See Box 4 in Fig. 3, there are two ways to perform prediction based on Eq. (41) and 
Eq. (42). The first way is intrinsically to get rt−1 → f t−1 and predict r̂t = a + ABf t−1 
for Eq. (41) and r̂t = a + A

(

Bf t−1 +Hmt

)

 for Eq. (42), while the second way is con-
sidering a given prediction rt−1 → yt via rt−1 → f t−1 , Bf t−1 → f t and then f t → yt 
by learning either linear or nonlinear regression, where yt could be either rt or any 
type of market indices. In one paper (Chiu and Xu 2002), f t → yt is implemented by 
the normalized radial basis function (NRBF) and extended NRBF (ENRBF) (Xu 1998, 
2009) and predicts the stock price or return rt . Empirical studies on Hong Kong mar-
ket data have shown the superiority of this prediction over not only a conventional 
prediction f t → yt , but also the prediction r̂t = a + ABf t−1.

Based on Eqs. (41) and (42), in addition to making a prediction featured with learning 
a regression f t → yt , we may also use f t to replace rt in the previous Eq. (29) for adap-
tive portfolio management; see Box 5 in Fig. 3. This APT based portfolio management 
was firstly suggested in Sect. III(c) and especially by Eqs.  (96) and (97) in Xu (2001). 
Extensive simulation results reveal that this f t-based portfolio management generally 
excels the return rt based portfolio management by Eq. (29) (Chiu and Xu 2004b).

In general, a parametric yt = g
(

f t , θ
)

 can be added to Eq. (41) to provide the outputs 
of this model for application purposes for such prediction and portfolio management. 

(42)

rt = a + A f t + et , E fte
T
t = 0,

f t = B f t−1 +Hmt + εt , E ft−1ε
T
t = 0, Emt−1ε

T
t = 0,

mt = Cvt + ηt , E vt η
T
t = 0,
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Moreover, beyond the consideration of Gaussian white noises as the driven noise ɛt, we 
may consider a non-Gaussian driven noise ɛt or a driven noise ɛt with a conditional het-
eroskedasticity. In summary, we further generalize Eq. (42) into the following model

(a)	

et ∼
i.i.d. G(et |0,Σe) with a diagonal covariance Σe

(b)	 yt = g
(

f t , θ
)

;

(c)	

(d)	

Its basic part consists of ingredients (a)(b)(c). In the special case H = 0, its function 
is TFA with two extensions. One is outputting yt, thus shortly denoted by TFA-O. The 
other is that ingredient (c) drives ft by its last term that is either or both of non-Gaussian 
(nG) and conditional heteroscedasticity (CH), for which we use nGCH-driven TFA-O to 
refer this formulation. When H ≠ 0, ft is also modulated by the macroeconomic market 
force mt , it leads to the general formulation shortly named nGCH-driven M-TFA-O.

The central role is taken by the statistical nature of ingredient (c), with several sce-
narios as follows:

•	 For the case that B = 0,H = 0 and q(ɛt(j)) in Choice (i) as well as σt(j) in Choice (a), 
ingredient (a) and ingredient (c) jointly degenerate back to the FA-based implemen-
tation of the original APT by Eq. (37).

•	 For the case that B = 0, εt = 0 , it follows from Ã = AH that ingredient (a) and ingre-
dient (c) jointly degenerate back to the fundamental factors based implementation of 
the original APT by Eq. (37).

•	 For the case that B = 0, q(ɛt(j)) in Choice (i), and σt(j) in Choice (a), ingredient (a) and 
ingredient (c) jointly act as a combination of the above two implementations.

•	 For the case that H = 0, q(ɛt(j)) in Choice (i), and σt(j) in Choice (a), as well as 
B = diag[b1, …, bm]T, ingredient (a) and ingredient (c) jointly become the TFA-based 
implementation by Eq.  (41). It further becomes Eq.  (42) when H ≠ 0. Moreover, 
conditional heteroskedasticity is further considered in εt via Choice (i) of σt(j) to be 
replaced by Choice (b). As shown by empirical investigation in the CIEF’2003 confer-
ence paper (Chiu and Xu 2003), we consider that the conditional heteroskedasticity 
in the TFA-based implementation is considerably better than the TFA-based imple-
mentation without such a consideration.

rt = a + Af t + et , E fte
T
t = 0,

ft = B f t−1 +Hmt + diag
�

σ
(1)
t , . . . , σ

(m)
t

�

εt , q(εt) =
�

j

q
�

ε
(j)
t

�

,

εt = [ε
(1)
t , . . . , ε

(m)
t ]T, E ft−1ε

T
t = 0, Emtε

T
t = 0, Eε

(j)
t = 0, Eε

(j)2
t = 1,

q
�

ε
(j)
t

�

=







G(ε
(j)
t |0, 1), (i) one Gaussian,

�

i

α
(j)
i G(ε

(j)
t |µ

(j)
i , �

(j)
i ), (ii)Gaussian mixture;

σ
(j)
t =

�

a constant σ(j), (a) nonheteroskedasticity,

σ
(j)
t

�

ϑ(j)
�

given by Eq. (3), (b) heteroskedasticity;

(43)

mt = Cνt + ηt , E νtη
T
t = 0,

ηt ∼
i.i.d. G(ηt |0,Ση)with a digognal covarianceΣη.
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Another alternative is that Choice (i) of a Gaussian q(ɛt
(j)) is replaced by Choice (ii) of 

a non-Gaussian q(ɛt
(j)). In the simplest case, B = 0, H = 0, and σt

(j) in Choice (a), ingre-
dient (a) and ingredient (c) jointly degenerate back to the non-Gaussian FA (NFA) as 
outlined in Fig. 3 by Box 6, for which details are referred to Sect. III(A) in Xu (2001), 
Sect. IV in Xu (2004), and Sect. 3.2 in Xu (2010). Accordingly, we get a Non-Gaussian 
APT as shown in Fig. 3 by Box 7. Interestingly, NFA can also remove the FA’s rotation 
indeterminacy by Eq.  (40), though there is no temporal structure f t in consideration 
because B = 0, H = 0. Similar to Fig. 6, shown in Fig. 7 are the results of empirical inves-
tigation made on determining the appropriate factor number of APT by NFA (Chiu and 
Xu 2004a), still in comparison with the results of the MLFA-LR test and the eigenvalue 
approach as listed in Fig. 7a. Again, the BYY harmony learning-based NFA stably identi-
fied four or five factors regardless of the numbers of securities.

This alternative provides a different perspective on how to remove the indeterminacy 
by Eq.  (40) or the incompleteness of APT. Without the additional equation about f t , 
the formulation of NFA implementation seems closer than the TFA implementation 
to the original APT formulation by Eq. (37). Naturally, there rises a question on which 
one is right, TFA or NFA? Actually, they are two aspects of one market model. TFA 
observes a dynamic market process while NFA describes the market with all the time 

Fig. 7  Comparison on finding the number of factors identified by MLFA-LR test, eigenvalue approach and 
the BYY harmony learning-based NFA
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points projected to one observation spot such that a Gaussian process is projected to be 
observed as a mixture of Gaussian distributions. Generally, we may have two natures to 
be considered in the same market, that is, considering both B = diag[b1, …, bm]T and the 
choice (ii) of a non-Gaussian q(ɛt

(j)). Even generally, the conditional heteroskedasticity 
may also be added in via letting σ(j)t  in the choice (b). Systematically integrating all the 
parts and all the ingredients together, Eq.  (43) may serve as a general formulation for 
financial market modeling.

Bayesian Ying–Yang harmony learning and two exemplar learning algorithms
Bayesian Ying–Yang (BYY) harmony learning

The Bayesian Ying–Yang (BYY) harmony learning was proposed in Xu (1995a, b) and 
subsequently developed systematically (Xu 2001, 2007, 2010, 2012), which provides not 
only a framework that accommodates typical learning approaches from a unified per-
spective, but also a new road that leads to improved model selection criteria, Ying–Yang 
alternative learning with automatic model selection, as well as coordinated implementa-
tion of Ying-based model selection and Yang-based learning regularization.

From a modern science perspective that regards the famous ancient Yin–Yang philoso-
phy as a meta theory of system sciences and intelligent systems, a system that survives 
and interacts with its world can be regarded as a Ying–Yang system that functionally 
composes of two complement parts. One is called Ying, from its inside into its external 
world, by which a set XN = {xt}

N
t=1 of samples are regarded as generated from its repre-

sentation R , while the other is called Yang, from an external world into its inside. A two 
directional view is considered via the joint distribution of X ,R in two types of Bayesian 
decomposition. The decomposition of p(X ,R) coincides the Yang concept with a visible 
domain p(X) for a Yang space and a X → R pathway by p(R|X) as a Yang pathway. Thus, 
p(X ,R) is called Yang machine. Also, q(X ,R) is called Ying machine with an invisible 
domain q(R) for a Ying space and a R → X pathway by q(X |R) as a Ying pathway. Such a 
Ying–Yang pair is called Bayesian Ying–Yang (BYY) system. Ying–Yang pair interact with 
each other under the principle of best harmony, which is mathematically implemented 
by maximizing

For a machine learning or modeling purpose, we first need to consider a mathematical 
representation for R . The first column of Table lists several typical examples. Usually, R 
consists of two parts. One is a long-term memory θ that consists of all unknown param-
eters in the system for collectively representing the underlying structure of XN , while 
the other is a short-term memory YL with each element being either or both of a cat-
egorical label ℓ ∊ L and a vector y ∊ Y as the corresponding inner representation of one 
element x ∊ X. For examples, we have a vector y for describing f t in the APT model by 
Eq. (37), while we simply have a label ℓ in the time series model by Eq. (4).

The probabilistic structure q(Y,  L) is considered jointly with q(X |R) = q(X |Y , L, θ) , 
depending on both the tasks in consideration and a trade-off between the complexity of 

(44)H(p||q) =

∫

p(R|X)p(X)ln[q(X |R)q(R)] dXdR.
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q(Y, L) and the complexity of q(X |Y , L, θ) . For the task of TFA modeling by Eq. (41), we 
have q(X |Y , L, θ) by q(rt |f t) and q(Y, L) by q

(

f t
∣

∣f t−1

)

 as follows:

Moreover, the remaining part in q(R) = q(Y, L|θ)q(θ) is usually called a priori q(θ) that 
is chosen depending on the types of parameters and their positions in the Ying machine. 
In general, a Ying machine q(X, R) = q(X|R)q(R) is designed according to a least complex-
ity principle, featured with designing q(R) = q(Y, L|θ)q(θ) in a least redundancy principle 
and designing q(X |R) = q(X |Y , L, θ) in a divide–conquer principle.

For the Yang machine p(X,  R) = p(R|X)p(X), p(X) directly comes from samples XN , 
while p(R|X) is designed based on the Ying machine q(X, R) = q(X|R)q(R) according to 
the variety preservation principle, that is 

where CovR|X indicates a covariance matrix of R conditioning on X. Readers are referred 
to Xu (2010, 2012) for recent systematic outlines on major issues for designing Ying–
Yang machines. To be specific, reading is suggested to start with Sect. 3.2 in Xu (2012) 
and refer to Sect. 4.2 in Xu (2010) for supplementary materials. Also, readers are referred 
to Xu (2011) for another perspective that a co-dimensional matrix pair forms a building 
unit and a hierarchy of such building units sets up the BYY system.

With a BYY system designed, all the remaining unknowns in the system are deter-
mined via maximizing the harmony functional by Eq.  (44). Typically, there are two 
types of unknowns. Given the structure of a BYY system or a parametric model in 
general, it actually means a family of infinite many candidate structures with everyone 
in a same configuration but in different scales. That is, each candidate is featured by a 
scale parameter k in terms of one integer or a set of integers. For examples, k consists 
of the model number k and the orders {qi} for the model in Eq. (3), while merely of the 
dimension k in the APT model by Eq. (37).

The second type of unknown is featured by a set θk of unknown parameters within 
the candidate structure featured by a specific k . Accordingly, maximizing the har-
mony functional H(p||q) by Eq. (44) makes both parameter learning on determining 
θk and model selection on determining k . This BYY best harmony learning provides 
a favorable mechanism for model selection. Readers are referred to Xu (2010, 2012) 
for recent systematic overviews on the fundamentals, the novelties and favorable 
natures of the BYY best harmony learning. To be specific, reading is suggested to start 
with Sect. 4.1 in Xu (2012) on two different aspects of measuring bi-entity proxim-
ity and Sect.  4.2 on the BYY harmony learning from the perspectives of Ying–Yang 
best matching versus Ying–Yang best harmony, and then proceed to Sect.  7 for a 

(45)
q(rt |f t) = G(rt |a + Af t ,Σ) with a diagonal Σ ,

q
(

f t
∣

∣f t−1

)

= G
(

f t
∣

∣Bf t−1,Λ
)

with a diagonalΛ.

(46)

p(R|X) = q(R|X) in a strong sense

or

CovR|X of p(R|X) = CovR|X of q(R|X) in a week sense.

q(R|X) = q(X |R)q(R)

/
∫

q(X |R)q(R) dXdR,
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systematic outline on the thirteen topics about the BYY best harmony learning. Also, 
readers are referred to Xu ( 2010) for supplementary materials in Sect.  4.1 and the 
roadmap shown in Fig. A2 for the relations to other typical learning approaches.

The implementation of maximizing H(p||q) consists of different specific cases 
for different learning problems and application tasks. Inputting the samples XN  by 
p(X) = δ(X − XN ) , H(p||q) in Eq. (44) is simplified into the one on the top of Table 1. 
As R takes different specific forms given in the first column of Table 1, we have four 
types of H(p||q) as listed in the second column of the table, plus their corresponding 
special cases of i.i.d. samples {xt}Nt=1.

Moreover, the collective operations 
∫

[•] dYN and 
∑

L [•] may be simplified by remov-
ing the integral or the summation to merely consider their optimal values, from which 
those of H(p||q) in the second column of Table 1 result in the corresponding counter-
parts of H(Θk |XN ) in the third column of the table. Each type in the second column 
may have more than one counterparts by removing either or both of the two collective 
operations. Such a removal makes learning implementation of H(Ξk |XN ) easier but the 
learned system become more prone to an overfitting of a small size of samples.

Table 1  H(p||q) in four specific types of implementations
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As addressed at the end of “Learning mixture of AR, ARMA, ARCH and GRACH 
models” section, the BYY harmony learning has an automatic model selection 
mechanism similar to the RPCL learning. Additionally, H(Θk |XN ) in the third col-
umn of Table  1 provides another angle to view such a mechanism. For example, 
observing the choice (a) in the last-bottom box of the table, maximizing H(Θk |XN ) 
consists of maximizing not only p(θ |XN ,Ξ) that is same as the Bayesian learn-
ing, but also 

∑N
t=1 p(yt , ℓt |xt , θ)π(xt , yt , ℓt |θℓt ) that includes maximizing a term 

ωyt ,ℓt lnωyt ,ℓt with ωℓt = q(xt |yt , ℓt , θℓt )q(yt , ℓt |θℓt ) . Noticing that ωyt ,ℓt lnωyt ,ℓt . 
monotonically increasing for ωℓt > e−1 but decreasing for ωℓt < e−1 , a value 
ωℓt = q(xt |yt , ℓt , θℓt )q(yt , ℓt |θℓt ) > e−1 indicates the current fit to xt is bigger than this 
threshold and increasing ωℓt lnωℓt enhances learning by q

(

xt |yt , ℓt , θℓt
)

q(yt , ℓt |θℓt ) to 
fit xt; while a value ωℓt < e−1 indicates that this fit is below a threshold and increasing 
ωℓt lnωℓt actually reduces this fit, i.e., a de-learning occurs. This is similar to the RPCL 
learning.

For the existing Bayes approaches, it is crucial to choosing an appropriate prior, 
which is usually a difficult task, while an inappropriate prior may deteriorate the per-
formance of model selection seriously. Without any priors on the parameters, Bayes 
approaches degenerate to the maximum likelihood learning, while the BYY harny 
learning is still capable of automatic model selection. Also in Table 1, if a priori dis-
tribution q(θ|Ξq) is also considered, the performances of BYY harmony learning will 
be further improved. A simple choice of q(θ|Ξq) is a Jeffreys prior, for which there is 
no parameter Ξq. Alternatively, we may also consider a parametric distribution. Typi-
cally, a priori q(θ|Ξq) and a posteriori p(θ |XN ,Ξp) are either jointly a conjugate para-
metric pair or approximately two parametric distributions with each having a set of 
hyper-parameters, namely, Ξp,Ξq. Actually, a hyper-priori q(Ξ) is further considered 
for Ξ =

{

Ξp,Ξq

}

 , for which q(Ξ) is a distribution usually with no more prior, e.g., by 
a Jeffreys prior.

The implementation of maximizing H(p||q) is featured by jointly determining Θk and 
k , namely

Moreover, determining Θk further consists of determining θk and Ξk (if any), as well as 
updating yt, ℓt per sample xt. Generally, the implementation of Eq. (47) is an alternative 
iterative process that consists of Step yℓ for updating yt, ℓt, Step θ for parameter learn-
ing, Step Ξ for learning hyper-parameters (if any), and Step k for model selection. This 
process is featured by apex approximation, manifold shrinking, and balanced operation. 
Readers are referred to Sect. 4.3 in Xu (2012) for a recent systematic overview on major 
issues about the BYY harmony learning implementation and to Sect. 4.3 in Xu (2010) 
for further supplementary materials. Considering two typical learning tasks, readers are 
referred to Sect. 2 in Xu (2012) and Sect. 3 in Xu (2010) for the BYY harmony learning 
algorithms on Gaussian mixture and factor analysis as well as their extensions.

(47)max
k ,Θk

H(Θk |XN ).
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Learning implementation: gradient algorithms versus EM‑like algorithms

The maximization by Eq.  (47) can be implemented by different types of learning algo-
rithms. The simplest and widely applicable type is featured by the following gradient 
based updating:

where �u ∝ gu means �u = γ gu with a small γ > 0, ∇u∈Duf (u) is the gradient of 
f(u) with respect to u within the domain Du of u, and u+�u ∈ Du means updat-
ing within the domain Du of u. In the sequel, the use of �u ∝ gu includes the updat-
ing unew = uold +�u ∈ Du even without writing it explicitly. For those choices of 
H(Θk |XN ) in Table 1, if integrals are involved, we need to first handle the integrals and 
then take gradient on a mathematical expression without integrals, for which we approx-
imately use a Taylor expansion around a maximal point up to the second order. Readers 
are referred to Sect. 4.3 in Xu (2012) for further details.

To show how a BYY harmony learning algorithm is obtained via the gradient based 
updating by Eq. (48). Further details are provided on learning the following alternative 
mixture-of-experts:

which comes from Eqs.  (10), (11) and (12), while μj,t comes from the GARCH model 
given by Eq. (5). To develop algorithms for the ML learning by Eq. (16)(c) and the RPCL 
learning by Eq. (18), we consider the following likelihood:

Instead of maximizing the likelihood, learning algorithm is derived for maximizing 

where q(θ|Ξq) is a priori distribution typically in a least redundant factorization as 
follows:

(48)Θnew
k ← Θold

k +�Θk ∈ DΘk
,�Θk ∝ ∇Θk∈DΘk

H(Θk |XN ),

(49)

p(xt |x
q
t−1, θ) =

k
∑

j=1

P(j|xt-1 − µj,t−1, θ)G(xt − µj,t |0, σ
2
j,t),

P(j|xt-1 − µj,t−1, θ) =
αjG(xt-1 − µj,t−1|0, σ

2
j,t−1)

∑k
j=1 αjG(xt-1 − µj,t−1|0, σ

2
j,t−1)

,

(50)
L({xt}

N
t=1|Θ) =

�

t
ln







k
�

j=1

αjG(xt−1 − µj,t−1|0, σ
2
j,t−1)G(xt − µj,t |0, σ

2
j,t)







,

and πj,t

�

θj
�

= ln{αjG(xt−1 − µj,t−1|0, σ
2
j,t−1)G(xt − µj,t |0, σ

2
j,t)}.

(51)

H(p||q) = ∫ p(θ |XN ,Ξp)H(Θk |XN ) dθ

H(Θk |XN ) = ln[q(θ |Ξq)q(Ξ)] +
∑

t

k
∑

j=1

pt,t−1(j|θ)πj,t

(

θj
)

,

pt,t−1(j|θ) =
αjG(xt−1 − µj,t−1|0, σ

2
j,t−1)G(xt − µj,t |0, σ

2
j,t)

∑k
j=1 αjG(xt−1 − µj,t−1|0, σ

2
j,t−1)G(xt − µj,t |0, σ

2
j,t)

,
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Alternatively, each factor may be simply a Jeffreys prior. The posterior p(θ|XN, Ξp) also 
have choices. First, p(θ|XN, Ξp) and q(θ|Ξq) are a conjugate pair such that the integral over θ 
can be handled analytically; see Sect. 4.3 of Xu (2012). Second, we may simply consider that 
p(θ|XN, Ξp) is free of structure and maximizing H(p||q) with respect to p(θ|XN, Ξp) is simpli-
fied into the maximization of H(Θk |XN ) with respect to Θk . It follows from Eq. (48) that we 
consider the following gradient updating 

where φ is a subset of Θk = {θ ,Ξk} , e.g., either of 
{

aj
}

,
{

µj

}

,
{

bj
}

,
{

wj

}

, . . . etc. One 
particular example of φ is α = [α1, . . . ,αk ]

T subject to each αj ≥ 0 and αT1 = 1 with 
1 = [1, …, 1]T, for which we get α via updating c = [c1, . . . , ck ]

T as follows:

As addressed in Eq.  (5) in Xu (2010) and in Sect. 4.3.2 of Xu (2012), the maximi-
zation of Eq.  (47) has a mechanism that pushes αj → 0 if the corresponding expert 
is extra, i.e., automatic model selection occurs. Each of nonnegative parameters in 
{

bj
}

,
{

wj

}

 may also be updated in a similar way, e.g., considering ξ = v2 or ξ = exp (v) 
such that ξ is updated via �v ∝ ∇vH(Θold

k |XN ). With the help of the priories q
(

βj,i
)

 
and q(ωj,i) in Eq. (52), the maximization of Eq. (47) also pushes βj,i → 0 and ωj,i → 0 if 
some order of the GARCH part in Eq. (4) and Eq. (5) is extra. Moreover, with help of 
the priori q(aj,i) in Eq. (52), the maximization of Eq. (47) also pushes ρ2

j,i → 0 if some 
order of the AR part in Eq. (4) and Eq. (5) is extra.

(52)

q
(

θ |Ξq

)

= q
(

{

αj
}k

j=1

)

∏

j,i

q
(

aj,i
)

∏

j,i

q
(

βj,i
)

∏

j,i

q
(

ωj,i

)

,

Usually, we have

q({αj}
k
j=1) : Dirichlet,

q
(

βj,i
)

, q
(

ωj,i

)

:nonnegative densities, e .g., exponential or gamma,

q
(

aj,i
)

: Gaussian or Laplacian, e.g., a Gaussian G(aj,i|0, ρ
2
j,i)

with q
(

ρ2
j,i

)

being a Jeffreys prior or an inverse gamma.

(53)

�φ ∝ ∇φH
(

Θold
k |XN

)

,φ ⊂ Θk = {θ ,Ξk},

∇φH(Θk |XN ) = gφ(Θk)+
∑

t

k
∑

j=1

ρj,t(θ)∇φπj,t(θ),

gφ(Θk) = ∇φ ln[q(θ |Ξq)q(Ξ)],

ρj,t(θ) = pt,t−1

(

j|θ
)[

1+�πj,t(θ)
]

,

�πj,t(θ) = πj,t
(

θj
)

−

k
∑

j=1

pt,t−1(j|θ)πj,t

(

θj
)

,

(54)

αj = ecj/
∑

ℓ
ecℓ ,�c ∝ ∇cH(θ ,Ξk |XN ) =

(

I − αold1T
)

diag

[

∑

t

p1,t , . . . ,
∑

t

pk ,t

]

,

If a αj → 0, discard the corresponding structure and its θj .
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The learning implementation by Eq.  (53) covers not only the gradient based ML 
learning by simply setting Δπj,t(θj

old) = 0 in the Yang step, but also the RPCL learning 
algorithm simply with pj,t given by Eq. (18). Moreover, setting wi = 0 leads to learning 
a mixture of ARCH models, while setting wi = 0 and bi = 0 degenerates to learning a 
mixture of AR models.

For implementing the ML learning, it also been widely regarded that the EM algo-
rithm is preferred over the gradient-based algorithm (Redner and Walker 1984; Xu 
and Jordan 1996). In addition to the gradient-based implementation by Eq. (53), the 
BYY harmony learning may also be implemented by the following EM-like procedure:

where A–B denotes the complement of A with respect to B, i.e., A−B = {x ∈ A|x /∈ B } . 
When the root φ* of χ(φ) = 0 is solved analytically, setting Δπj,t(θ) = 0 makes Eq.  (53) 
degenerate to the EM algorithm for the ML learning if gφ(Θk) = 0 or the Bayes learning 
if gφ(Θk) �= 0 . Generally, the algorithm by Eq. (55) is different from the EM algorithm by 
the factor 1 + Δπj,t(θ), which takes an important role in making model selection. How-
ever, the EM algorithm is guaranteed to converge (Redner and Walker 1984), while the 
factor 1 + Δπj,t(θ) makes the Ying–Yang iteration lose such a guarantee.

Efforts are made on remedying this weakness. One simple way is replacing φnew = φ* 
in Eq. (55) by the following linear combination

E.g., see Box 3 and Remark (c) in Fig. 7 and Box 7 in Fig. 8 of Xu (2010). However, how to 
choose an appropriate 0 ≤ η ≤ 1 remains a problem, which can be handled in one of the 
following two ways:

•	 Initialize η ≤ 1, get φnew by Eq.  (56) and check whether 
H(Θ̃old

k ∪φnew|XN ) > H(Θ̃old
k ∪φold |XN )

	 If yes, we move to the next Ying step in Eq. (55), otherwise reduce η in some way to get 
φnew and make such a check again.

•	 Seek an optimal η* that maximizes H(η) = H(Θ̃old
k ∪

[

φold + η

(

φ∗ − φold
)]

|XN ) , 

which can be handled by one of many techniques for one variable optimization. One 
example is solving the root of dH(η)/dη = 0.

(55)

Yang Step: pj,t = ρj,t

(

θold
)

, see Eq. (53),

Ying Step: Let Θ̃k = Θk − φ and θ̃ = θ − φ,

Solve the root φ∗of χ(φ) = 0 or approxaimtely (if difficult),

χ(φ) = gφ

(

Θ̃old
k ∪φ

)

+
∑

t

k
∑

j=1

pj,t∇φπj,t

(

θ̃old ∪φ

)

,

Then, update φnew = φ∗,

(56)φnew = φold + η

(

φ∗ − φold
)

, 0 ≤ η ≤ 1.
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Alternatively, another way to get φnew from φ* and φold is a reconsideration of 
∇φH(Θk |XN ) in Eq. (53). Making a first order Taylor expansion of ρj,t(θ) around θold and of 
∇φπj,t(θ) around φ*, we consider 

where the second ≈ comes from dropping the second order term 
(

φ − ϕold
)T

∇φρj,t

(

θold
)

∇φφTπj,t

(

θ̃old,ϕ∗
)

(φ − ϕ∗) . Taking the sum over j, t, the coun-

terpart of the first term becomes χ(φ∗) = 0 and thus disappears, from which we are led 
to 

Then, we solve ψ(φnew) = 0 to get φnew from φ* and φold. Particularly, when gφ(Θk) = 0 we 
simply have

It is still a linear function of φ* and φold, but becomes much advanced than the one by 
Eq. (56).

Linear causal analyses
Path analyses and a recent development on ρ‑diagram

Path analyses is one earliest causal analysis approach, proposed around 1918 
by Sewall Wright who made its developments more extensively in the 1920s (Wright 
1921, 1934). It has been not only further investigated in the formulation of structural 
equation modeling (SEM) (Ullman 2006; Hooper et al. 2008; Pearl 2010a; Kline 2015) 
with wide applications, but also found its uses in many complex modeling areas, 
including biology, psychology, sociology, and econometrics. Details are left to a vast 
volume of publications in literature. Here, we introduce a recent development on a 
modified formulation named ρ-diagram (Xu 2018).

The formulation considers a directed acyclic graph (DAG) or Bayesian networks, 
with visible nodes x1, x2,…, xn and hidden nodes w1,…,wm. Each xi is normalized to 
be zero mean and unit variance and each wj is assumed to be zero mean and unit 
variance too; while each edge is associated with the correlation coefficient between 
its two nodes. In other words, such a diagram is completely defined by pairwise cor-
relation coefficients, and thus called ρ-diagram in that each correlation coefficient is 
denoted by ρ shortly. Being different from the classical procedure for path analyses, 
namely getting topology by prior, estimating unknown parameters and causal effects, 

ρj,t(θ)∇φπj,t(θ) ≈
[

ρj,t

(

θold
)

+∇φρj,t

(

θold)T
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φ − ϕold
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)
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)
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)

]
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,

(57)ψ(φ) = ∇φH(Θk |XN ) ≈ gφ(Θk)+
∑

t

k
∑
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[
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and making model-fit assessment on alternative models, a TPC procedure is sug-
gested for ρ-diagram (Xu 2018), which begins at Topology discovery from data based 
on ρ-diagram, and then makes Parameter estimation and Causality embedded model-
fit assessment.

Topology discovery is based on equations that are obtained from path tracing in a 
way similar to Wright’s system of tracing rules. The difference is that unknowns in 
equations involve only the within-diagram ρ-variables, while knowns are pairwise 
correlation r-coefficients obtained from visible nodes x1, x2,…, xn, subject to the con-
straints that all the ρ-variables vary between [− 1,+ 1]. We discover a topology under-
lying data by checking whether a set of constrained equations is deterministically 
solved, that is, having (1) no solution, (2) a unique solution (or few solutions), and (3) 
infinite many of solutions.

For details refer to Xu (2018). Here, an illustration is made on topologies of 3-node 
diagrams, as illustrated in Fig. 8. Given a diagram with nodes x, y, z, the simplest case 
is illustrated in Fig. 8a, featured by that every pairwise correlation is zero or there is 
only one pair that gets rij ≠ 0, which can be directly identified by observing rij, ∀i,j 
∈{x,y,z}. Shown in Fig. 8b are topologies that have two edges. The first one gets two 
edges in a fork, which can be identified by observing rij = 0 for only one pair while 
rij ≠ 0 for other two pairs. The other topologies describes the causality from condi-
tional independence analysis, which can be identified by observing rikrkj =  rij ≠ 0 ∀i,j 
∈{x,y,z} on all the permutations of x, y, z.

Shown in Fig. 8c are two typical topologies of widely encountered causal structure 
called cofounder. Via path tracing, the following equations are obtained:

As shown in Fig. 8c, we may check whether two lines get cross within the dashed 
box. If yes, a cofounder is identified in either of two topologies on the bottom of 

(59)ρki + ρkjρji = rki, ρji + ρkjρki = rji, ρkj = rkj; −1 ≤ ρji, ρkj , ρki ≤ 1

Fig. 8  Causal analyses: path analysis on ρ-diagram and causal potential theory
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Fig.  8c. However, the direction between j and k cannot be identified. Even so, the 
direct causal direction and effect 

is uniquely determined, i.e., the cofounder effect can be remedied.
If two lines do not intersect within the box, one may further check one other permu-

tation of labels i, j, k. It is unlikely that two different permutations are both identified 
because it merely happens when not only ρ = r holds on two edges but also four linear 
equations have consistent solution for unknowns. If no permutation can be identified, it 
means that there is not such a cofounder causality underlying data. However, there may 
be still other causality. On one hand, we may check whether there is some causality in 
types of Fig. 8a, b. On the other hand, we may continue to diagrams with four nodes or 
more.

Causal potential theory

As already mentioned above, the direction between j and k in Fig. 8c cannot be identi-
fied. Also, edge directions in Fig. 8b cannot be identified too. There have been exten-
sive studies on detecting causal direction and evaluating causal strength (Peters et  al. 
2009; Zhang and Hyvärinen 2009; Hoyer et al. 2009; Rubin and John 2011), via analyz-
ing certain types of asymmetry between two variables X and Y. One most authoritative 
definition of causality is p(Y|do X = x) with ‘do X = x’ indicating the action that imposes 
X = x (Pearl 2010b). In these studies, causality is actually examined from a descriptive 
perspective.

As illustrated in Fig. 8d, possible movements that apple falls and balance loses are 
actually caused by physics mechanism, i.e.,  the law of universal gravitation and the 
lever principle, where causality is actually an issue of dynamics, about how move-
ments are caused by forces that come from potential difference. It follows from the 
viewpoint of grand unification that we are thus motivated to believe that causality in 
terms of probability, information, and intelligence should be also governed by similar 
dynamics.

Consider the relationship described by density distribution p
(

x, y
)

, as illustrated in 
Fig.  8d, the quantity E

(

x, y
)

∝ −lnp
(

x, y
)

 actually describes a sort of potential energy 
density on an infinitesimal piece dxdy, and represents a difference of potential energy 
density in reference of a uniform distribution on the space x, y, while we can get

to represent a force field that drives information flow toward the area with the lowest 
energy, or equivalently driving that information flows from rare occurring locations 
toward high occurring locations.

Changes of x, y and the rates of changes are described by Ix, Iy, respectively, and both 
are actually driven by the difference of potential energy density of E(x, y). The problems 
about whether one of X, Y causes the other or whether two are mutually caused each 
other may be examined through Ix, Iy. Typically, we may encounter the following cases:

(60)ρji =
(

rji − rkjrki
)

/(

1− r2kj

)

(61)
[

Ix, Iy
]

=

[

−
∂E

(

x, y
)

∂x
,−

∂E
(

x, y
)

∂y

]
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For Case O, changes of x merely relates to itself, while changes of y merely relates to 
itself, that is, changing x is independent of change of y. For Case A, changes of x merely 
relates to itself, while changes of y relate to both of x, y, where we may regard that chang-
ing x causes change of y. For Case B, changes of y merely relates to itself, while changes 
of x relate to both of x, y, where we may regard that changing y causes change of x. For 
Case C, changes of x, y are mutually related.

From a set of samples of x, y, we may develop certain statistics to identify which case 
is actually encountered. Due to noise and a finite sample size, the first three cases are 
rarely found. What are often encountered is Case C. In such cases, we may further 
check whether one of x, y takes a dominant role, while the other maybe ignored, that is, 
whether we have either or both of

Further insights on causality may be obtained from this perspective, not only a pair X, 
Y may be identified in one of the four cases on the entire domain that x, y vary, but also 
a pair may be identified in one case on some subdomain but in a different case on some 
different subdomain. That is, causal direction may reverse, disappear, and emerge as x, y 
vary on different subdomains.

To be more specific, we observe two typical examples. The first considers binary x, y 
from

 where s(r) is a sigmoid function and p(y|x) describes a logistic regression, for which we get 

We usually have δ ≈ 0 if the logistic regression fits well, thus it leads to Case A above, 
i.e., the causal direction is x → y, which is consistent to our existing understanding on 
this model.

The second example considers p(x,y) from a joint density of Gaussian variables x, y 
with zero mean and unit variance as well as their correlation coefficient ρ. It follows that 

(62)
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∂ lnp

(
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∂ lnp
(
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Case C : Ix =
∂ lnp
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= f
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(63)f
(
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≈ f (x), g
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y
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.

(64)p
(

x, y
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= p
(

y|x
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p(x), for x, y = 0, 1

p
(

y|x
)

= sy(bx + c)[1− s(bx + c)]1−y, q(x) = qx(1− q)1−x,

(65)

Ix = ln
q

1− q
+ bs′(bx+c)
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−

1− y

1− s(bx + c)
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= ln
q
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.

(66)−Ix = x + ρy, −Iy = y+ ρx,
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which leads to Case 0 when ρ = 0, Case A when ρy ≈ 0, Case B when ρx ≈ 0, and Case C 
in general. That is, we are unable to identify causal direction on the entire domain, which 
is also consistent to our existing understanding. Interestingly, we get new insight that it 
is possible to detect causal direction in some particular subdomains.It also may deserve 
to extend these studies to consider a density p(x, y) with x, y being vectors such that we 
examine causality between two groups of variables.

SEM and its relations to modulated TFA‑APT and nGCH‑driven M‑TFA‑O

In its early stages of developments, modeling by equations in path analyses and structural 
equation modeling (SEM) were used without a particular clarification. In recent decades, 
SEM is gradually developed into the following formulation (Ullman 2006; Kline 2016):

To compare modulated TFA-APT and nGCH-driven M-TFA-O, we observe the fol-
lowing equations from Eq. (42) and in Eq. (43):

Putting the last one into the second one, we may rewrite

Table 2 compares the notations in Eqs. (62) and (63).
The two are actually the same at the special case H = 0. Generally, we observe that 

modulated TFA-APT may be regarded as a variant or extension of SEM.
Coming from different perspectives, SEM and the modulated TFA–APT aim at causal 

analysis in a closely related way. Both consist of FA as basic ingredient that suffers the 
intrinsic rotation indeterminacy by Eq. (40). In path analysis and SEM study, the prob-
lem is avoided by making hidden factors ft and/or the elements of A partly known with 
human-aide. While in the modulated TFA-APT, the problem is solved by considering 
both independence cross hidden factors and temporal dependence Bft

−
1 among each 

factor. We may combine the ideas to improve each other. On one hand, SEM motivates 
us to prune away extra edges that correspond to elements of A, which may be imple-
mented by sparse learning. On the other hand, we may improve SEM by considering 
temporal dependence among endogenous factors.

Moreover, rotation indeterminacy may also be removed by changing the driving noise 
of hidden factors from Gaussian q(ɛt

(j)) into non-Gaussian q(ɛt
(j)) (Xu 2001, 2004). Fur-

thermore, conditional heteroskedasticity (Chiu and Xu 2003) has also been included 
in the driving noise to encode non-stationarity. The two points are actually included in 
Item (c) in Eq. (43), which extends the modulated TFA-APT into nGCH-driven M-TFA-
O, which may also be used to improve SEM.    Furthermore,   a non-diagonal matrix B 
may be considered to replace a diagnal matrix B in TFA, such that  Granger  causality 

(67)x = �xξ + δ, y = �yη + ε, η = Bη + Ŵξ + ς

rt = a + A f t + et , f t = B f t−1 +Hmt + εt , mt = Cvt + ηt ,

(68)
f t = B f t−1 +HCvt +Hηt + εt ,

rt = a+ A f t + et , mt = Cvt + ηt .

Table 2  In comparison with modulated TFA-APT and GMCH-driven M-TFA

In Eq. (61) y Λyη ε Bη Γξ ς x Λxξ δ

In Eq. (62) rt -a Aft et Bft-1 HC vt Hηt +εt mt Evt ηt
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like problem (Granger 1969) may be taken in consideration together with the previous 
cofounder problem further examined.
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