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Abstract

In many data analysis tasks, one is often confronted with very high dimensional data.
The manifold assumption, which states that the data is sampled from a submanifold
embedded in much higher dimensional Euclidean space, has been widely adopted by
many researchers. In the last 15 years, a large number of manifold learning algorithms
have been proposed. Many of them rely on the evaluation of the geometrical and
topological of the data manifold. In this paper, we present a review of these methods
on a novel geometric perspective. We categorize these methods by three main groups:
Laplacian-based, Hessian-based, and parallel field-based methods. We show the
connection and difference between these three groups on their continuous and
discrete counterparts. The discussion is focused on the problem of dimensionality
reduction and semi-supervised learning.
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Review
Introduction

In many data analysis tasks, one is often confronted with very high dimensional data.
There is a strong intuition that the data may have a lower dimensional intrinsic repre-
sentation. Various researchers have considered the case when the data is sampled from a
submanifold embedded in much higher dimensional Euclidean space. Consequently, esti-
mating and extracting the low-dimensionalmanifold structure, or specifically the intrinsic
topological and geometrical properties of the data manifold, become a crucial problem.
These problems are often referred to asmanifold learning (Belkin and Niyogi 2007).
The most natural technique to exact low-dimensional manifold structure with given

finite samples is dimensionality reduction. The early work for dimensionality reduc-
tion includes principal component analysis (PCA; Jolliffe 1989), multidimensional scaling
(MDS; Cox and Cox 1994), and linear discriminant analysis (LDA; Duda et al. 2000). PCA
is probably the most popular dimensionality reduction methods. Given a data set, PCA
finds the directions along which the data has maximum variance. However, these linear
methods may fail to recover the intrinsic manifold structure when the data manifold is
not a low-dimensional subspace or an affine manifold.
There are various works on nonlinear dimensionality reduction in the last decade.

The typical work includes isomap (Tenenbaum et al. 2000), locally linear embedding
(LLE; Roweis and Saul 2000), Laplacian eigenmaps (LE; Belkin and Niyogi 2001), Hessian
eigenmaps (HLLE; Donoho and Grimes 2003), and diffusion maps (Coifman and Lafon
2006; Lafon and Lee 2006; Nadler et al. 2006). Isomap generalizes MDS to the nonlinear
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manifold case which tries to preserve pairwise geodesic distances on the data manifold.
Diffusion maps try to preserve another meaningful distance, that is, diffusion distance
on the manifold. Laplacian operator and Hessian operator are two of the most important
differential operators in manifold learning. Intuitively, Laplacian measures the smooth-
ness of the functions, while Hessian measures how a function changes the metric of the
manifold.
One natural nonlinear extension of PCA is kernel principal component analysis (kernel

PCA; Schölkopf et al. 1998). Interestingly, Ham et al. (2004) showed that Isomap, LLE,
and LE are all special cases of kernel PCA with specific kernels. Recently, maximum vari-
ance unfolding (MVU; Weinberger et al. 2004) is proposed to learn a kernel matrix that
preserves pairwise distances on the manifold.
Tangent space-based methods have also received considerable interest recently, such

as local tangent space alignment (LTSA; Zhang and Zha 2005), manifold charting (Brand
2003), Riemannian manifold learning (RML; Lin and Zha 2008), and locally smooth
manifold learning (LSML; Dollár et al. 2007). These methods try to find coordinate rep-
resentation for curved manifolds. LTSA tries to construct a global coordinate via local
tangent space alignment. Manifold charting has a similar strategy, which tries to expand
themanifold by splicing local charts. RML uses normal coordinate to unfold themanifold,
which aims to preserve the metric of the manifold. LSML tries to learn smooth tangent
spaces of the manifold by proposing a smoothness regularization term of tangent spaces.
Vector diffusion maps (VDM; Singer and Wu 2012) and parallel field embedding (PFE;
Lin et al. 2013) are much recent works which employ the vector fields to study the metric
of the manifold.
Among many of these methods, the core ideas of learning the manifold structure are

based on differential operators. In this paper, we would like to discuss differential opera-
tors defined on functions and on vector fields. The former include Laplacian and Hessian
operators, and the latter include the covariant derivative and the connection Laplacian
operator. Since there are lots of geometric concepts involved, we first introduce the
background of relevant geometric concepts. Then, we discuss the problem of dimension-
ality reduction and semi-supervised learning by using these differential operators. The
discussion not only focuses on their continuous counterpart but also on their discrete
approximations. We try to give a rigorous derivation of these methods and provide some
new insights for future work.

Background

In this section, we introduce the most relevant concepts.

Tangent spaces and vector fields

Let M be a d-dimensional Riemannian manifold. As the manifold is locally a Euclidean
space, the key tool for studying the manifold will be the idea of linear approximation. The
fundamental linear structure of the manifold is the tangent space.

Definition 2.1 (Tangent space; Lee 2003). Let M be a smooth manifold and let p be a
point onM. A linear map X : C∞(M) → R is called a derivation at p if it satisfies:

X(fg) = f (p)Xg + g(p)Xf
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for all smooth functions f , g ∈ C∞(M). The set of all derivations of C∞(M) at p is a vector
space called the tangent space to M at p, and is denoted by TpM. An element of TpM is
called a tangent vector at p.

The definition of the tangent space is totally abstract. We first take an example in
Euclidean space to show that why a tangent vector is a derivation. Let v denote a geomet-
ric tangent vector in R

m. Define a map Dv|a : C∞(Rm) → R, which takes the directional
derivative in the direction v at a:

Dv|af = Dvf (a) := d
dt

|t=0f (a + tv).

Clearly, this operation is linear and it satisfies the derivation rule. Therefore, we might
write the directional derivative of f in the direction of Y as Yf = Y (f ) = DY f = ∇Y f ,
where ∇ denotes the covariant derivative on the manifold. Next, we show what a tangent
space is on the manifold by using local coordinates. Let {xi|i = 1, . . . , d} denote a local
coordinate chart around p. Then, it can be easily verified by definition that ∂i|p := ∂

∂xi |p
is a tangent vector at p. Moreover, these coordinate vectors ∂1|p, . . . , ∂d|p form a basis for
TpM (Lee 2003). Therefore, the dimension of the tangent space is exactly the same as the
dimension of the manifold. For example, consider a two-dimensional sphere embedded in
R
3; given any point of the sphere, the tangent space of the sphere is just a two dimensional

plane.
For any smooth manifold M, we define the tangent bundle of M, denoted by TM, to

be the disjoint union of the tangent spaces at all points of M: TM = ∪p∈MTpM. Now,
we define the vector field.

Definition 2.2 (Vector field; Lee 2003). A vector field is a continuous map X : M →
TM, usually written as p �→ Xp, with the property that for each p ∈ M, Xp is an element
of TpM.

Intuitively, a vector field is nothing but a collection of tangent vectors with the continu-
ous constraint. Since at each point, a tangent vector is a derivation. A vector field can be
viewed as a directional derivative on the whole manifold. It might be worth noting that
each vector Xp of a vector field X must be in the corresponding tangent space TpM. Let
X be a vector field on the manifold. We can represent the vector field locally using the
coordinate basis as X = ∑d

i=1 ai∂i, where each ai is a function which is often called the
coefficient of X. For the sake of convenience, we will use the Einstein summation conven-
tion: when an index variable appears twice in a single term, it implies summation of that
term over all the values of the index, i.e., we might simply write ai∂i instead of

∑d
i=1 ai∂i.

Riemannianmetric

Next, we discuss the metric tensor of the manifold. Let (M, g) be a d-dimensional
Riemannian manifold embedded in a much higher dimensional Euclidean space R

m,
where g is a Riemannian metric onM. A Riemannian metric is a Euclidean inner product
gp on each of the tangent space TpM, where p is a point on the manifoldM. In addition,
we assume that gp varies smoothly (Petersen 1998). This means that for any two smooth
vector fields X,Y , the inner product gp(Xp,Yp) should be a smooth function of p. The
subscript p will be suppressed when it is not needed. Thus, we might write g(X,Y ) or
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gp(X,Y ) with the understanding that this is to be evaluated at each p where X and Y are
defined. Generally, we use the induced metric for M. That is, the inner product defined
in the tangent space ofM is the same as that in the ambient spaceRm, i.e., g(u, v) = 〈u, v〉
where 〈·, ·〉 denote the canonical inner product in R

m.
Given coordinates x(p) = (x1, . . . , xd) on an open set U of M, we can thus construct

bilinear forms dxi · dxj. Then, the Riemannian metric g can be represented as:

g = g(∂i, ∂j)dxi · dxj.
Because

g(X,Y ) = g
(
dxi(X)∂i, dxj(Y )∂j

)
= g

(
∂i, ∂j

)
dxi(X) · dxj(Y ).

The function g(∂i, ∂j) are denoted by gij, i.e., gij := g(∂i, ∂j). This gives us a repre-
sentation of g in local coordinates as a positive definite symmetric matrix with entries
parameterized over U.

Covariant derivative

A vector field can measure the change of functions on the manifold. Now, we consider
the question of measuring the change of vector fields. Let X = ai∂i be a vector field in
R
d where ∂i denotes the standard Cartesian coordinate. Then, it is natural to define the

covariant derivative of X in the direction Y as:

∇YX = (∇Y ai
)
∂i = Y (ai)∂i.

Therefore, we measure the change in X by measuring how the coefficients of X change.
However, this definition relies on the fact that the coordinate vector field ∂i is constant
vector field. In other words, ∇Y ∂i = 0 for any vector field Y. For general coordinate vector
fields, they are not always constant. Therefore, we should give a coordinate free definition
of the covariant derivative.

Theorem 2.1 (The fundamental theorem of Riemannian geometry; Petersen 1998).
The assignment X → ∇X on (M, g) is uniquely defined by the following properties:

1. Y → ∇YX is a (1, 1)-tensor:

∇αv+βwX = α∇vX + β∇wX.

2. X → ∇YX is a derivation:

∇Y (X1 + X2) = ∇YX1 + ∇YX2,

∇Y (fX) = (Yf )X + f∇YX

for functions f : M → R.
3. Covariant differentiation is torsion free:

∇XY − ∇YX =[X,Y ] .

4. Covariant differentiation is metric:

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ),

where Z is a vector field.
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Here, [ ·, ·] denotes the Lie derivative on vector fields defined as [X,Y ]= XY −YX. Any
assignment on a manifold that satisfies rules 1 to 4 is called a Riemannian connection.
This connection is uniquely determined by these four rules.
Let us see what a connection is in local coordinates. Let X and Y be two vector fields on

the manifold, we can represent them by local coordinates as X = ai∂i and Y = bj∂j. Now,
we can compute ∇YX in local coordinates using the four rules as follows:

∇YX = ∇bi∂ia
j∂j = bi∇∂iaj∂j = bi∂i

(
aj

)
∂j + biaj∇∂i∂j. (1)

The second equality holds due to the first rule of the connection and the third equality
holds due to the second rule of the connection. Since∇∂i∂j is still a vector field on theman-
ifold, we can further represent it as ∇∂i∂j = �k

ij∂k , where γ k
ij are called Christoffel symbols

(Petersen 1998). The Christoffel symbols can be represented in terms of the metric.

Laplacian operator and Hessian operator

Let f be a function on the manifold. The one-form df : TM → R measures the change
of the function. In local coordinates, we have df = ∂i(f )dxi. Note that df is independent
to the metric of the manifold. However, the gradient field gradf = ∇f depends on the
metric of the manifold.

Definition 2.3 (Gradient field; Petersen 1998). Let f be a smooth function on the
manifold. The gradient vector field ∇f of f is the vector field satisfying:

g(X,∇f ) = df (X),∀X ∈ TM

It might be worth noting that we also have df (X) = Xf . In local coordinates, we have
∇f = gij∂if ∂j.
We know that on R

d , the Laplacian � is defined as �f = −div∇f 1. The divergence of a
vector field, divX is defined as:

divX = tr(∇X).

In local coordinates, this is as follows:

tr(∇X) = dxi
(∇∂iX

)
,

and with respect to an orthonormal basis

tr(∇X) =
n∑

i=1
g
(∇eiX, ei

)
.

Thus,

Definition 2.4 (Laplacian; Petersen 1998). The Laplacian operator is defined as follows:

�f = −tr
(∇(∇f )

) = −div(∇f ).

Also, we can define a second-order derivative on a function. First, we give the definition
of second-order derivative:

∇2f (X,Y ) = ∇X∇Y f − ∇∇XY f .

Then, we have:
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Definition 2.5 (Hessian; Petersen 1998). The Hessian operator of a function f is a (0, 2)
tensor which is defined as follows:

Hessf (X,Y ) := ∇2f (X,Y ) = ∇X∇Y f − ∇∇XY f ,∀X,Y ∈ TM.

A geometric viewpoint of dimensionality reduction

In the problem of dimensionality reduction, one tries to find a smoothmap: F : M → R
d,

which preserves the topological and geometrical properties ofM.
However, for some kinds of manifolds, it is impossible to preserve all the geometrical

and topological properties. For example, consider a two-dimensional sphere, there is no
such map that maps the sphere to a plane without breaking the topology of the sphere.
Thus, there should be some assumptions of the data manifold. In most of papers, they
consider a relatively general assumption that the manifoldM is diffeomorphic to an open
subset of the Euclidean space Rd . In other words, we assume that there exists a topology
preserving map fromM to R

d .

Variational principals

Since the target space is the Euclidean space Rd, we can represent F by its components
F = (

f1, . . . , fd
)
, where each fi : M → R is a function on the manifold.

Next, we introduce various variational objective functionals on F or fi. For simplicity,
we first consider the objective for each component. Let f : M → R be a smooth function
on the manifold, and let C∞(M) denote the space of smooth functions on the manifold.
Clearly, C∞(M) is a linear space. Then, we can define an inner product on C∞(M) as
follows:

〈f , g〉 :=
∫
M

f (x)g(x)dx.

Then, the norm ‖ · ‖ on C∞(M) can be defined as:

‖f ‖2 := 〈f , f 〉.

One can show that it is a valid norm. Also, we can define a norm for vector fields. For any
two vector fields X and Y, define the inner product 〈·, ·〉 on the space of vector fields as:

〈X,Y 〉 :=
∫
M

g(X,Y )dx.

The norm of X can be defined as ‖X‖2 := ∫
M g(X,X)dx. Therefore, (�(TM), ‖ · ‖) is a

normed vector space, where �(TM) denotes the space of vector fields.
The first functional is given as follows:

max
f

‖f ‖2 =
∫
M

f (x)2dx, s.t.
∫
M

f (x)dx = 0. (2)

Note that when the mean of the function
∫
M f (x)dx equals to zero, ‖f ‖2 measures how

the function varies on the manifold. If the function varies dramatically, then ‖f ‖2 is large;
if the function varies a little, then ‖f ‖2 is small. The statistical meaning of ‖f ‖2 is exactly
the covariance of the random variable f on the manifold. Clearly, this problem is not well-
defined as the optimal value can be infinity. In other words, one can always construct a
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function varies as dramatically as possible. But if we restrict the function f to be linear,
then we will have a meaningful solution. Assume f (x) = aTx, then:

max
a

‖f ‖2 =
∫
M

aTxxTadx = aT
(∫

M
xxTdx

)
a, s.t. aT

∫
M

xdx = 0. (3)

Since a cannot be zero, the constraint becomes
∫
M xdx = 0. If we approximate the

integral by discrete summations over data points, then Equation 3 becomes the objective
function of PCA. The solution can be obtained by singular value decomposition (SVD).
Next, we consider the case when f is a nonlinear function. A widely adopted principal is

the smoothness principal: if two points x and y are close, then f (x) and f (y) should also be
close. It is sometimes also referred as locality preserving property (He and Niyogi 2003).
The smoothness principal can be formularized as minimizing the norm of the gradient of
the function (Belkin and Niyogi 2001). Formally, we would like to minimize the following:

min
f

‖∇f ‖2, s.t. ‖f ‖2 = 1. (4)

Under certain boundary conditions, by Stoke’s theorem, we have the following equation:

‖∇f ‖2 = 〈∇f ,∇f 〉 =
∫
M

g
(∇f ,∇f

) =
∫
M

f · �f = 〈f ,�f 〉.
Therefore, Equation 4 is equivalent to:

min
f

〈f ,�f 〉, s.t. ‖f ‖2 = 1.

If we rewrite it by the method of Lagrange multipliers, then it becomes:

min
f

〈f ,�f 〉 + λ
(‖f ‖2 − 1

)
By taking derivatives with respect to f, the first-order optimality condition implies:

�f = −λf .

In discrete cases, one often uses graph Laplacian (Chung 1997) to approximate the
Laplacian operator. Some theoretical results (Belkin and Niyogi 2005; Hein et al. 2005)
also show the consistency of the approximation. One of the most important features of
the graph Laplacian is that it is coordinate free. That is, it does not depend on any special
coordinate system. The representative methods include Laplacian eigenmaps (LE; Belkin
and Niyogi 2001) and locality preserving projections (LPP; He and Niyogi 2003). Note
that (Belkin and Niyogi 2001) has showed that the objective function of LLE is equivalent
to minimizing 〈L2f , f 〉. If we replace L by L2 in the last equation, we will get LLE. There-
fore, LLE also belongs to this category. Generally, we can replace the Laplacian operator
by any compact self-adjoint operators.
Next, we consider another variational objective function which uses the second-order

information. The first-order information measures the smoothness of the function, and
the second-order information measures the metric information of the manifold.

min
f

∫
M

‖Hess f ‖2HSdx, s.t. ‖f ‖2 = 1. (5)

The norm ‖ ·‖ represents the standard tensor norm. In matrix form, this norm is equiv-
alent to the Frobenius norm. In this case, it is much harder to get the optimality condition.
Since Hessian operator is second order, the optimality condition will be a fourth-order
equation. However, we can simply study the null space of the objective function. In other
words, we would like to study functions that satisfying Hess f = 0.
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Proposition 3.1 (Petersen 1998). Let f : M → R be a continuous function on the
manifold. If Hess f ≡ 0, then:(

f ◦ γ
)
(t) = f (γ (0)) + αt

for each geodesic γ .

The function satisfying Hessf ≡ 0 is said to be linear on the manifold. Proposition 3.1
tells us that a linear function on the manifold varies linearly along the geodesics on the
manifold. As pointed out by Goldberg et al. (2008), the final embedding may not be
isometry due to the fact of normalization. The representative methods are Hessian-based
methods including HLLE.
It motivates the development of vector field-based methods. The objective function of

parallel field embedding (PFE; Lin 2013) is as follows:

min
V

∫
M

‖∇V‖2HS, s.t. ‖Vx‖ = 1 ∀x ∈ M. (6)

After solving the above function to obtain parallel vector fields, one solves the following:

min
f

∫
M

‖∇f − V‖2. (7)

Interestingly, we can represent Equation 6 by a quadratic form as follows:∫
M

‖∇V‖2HS =
∫
M

g
(∇∗∇V ,V

)
∇∗∇ is called the connection Laplacian operator on the manifold. Therefore, Equation 6
can be viewed as a vector field generalization of Laplacian eigenmaps. Taking derivatives
of Equation 7 with respect to f, we get:

�f = −div(V ),

where div is the divergence operator on the manifold.
Note that Hessf = ∇∇f . If V = ∇f , then, the objective function in Equation 6

becomes the objective function of HLLE. And also �f = −div(V ) holds by noticing that
�f = −div(∇f ).

Manifold regularization

Besides dimensionality reduction, the functionals introduced in the last section have
been widely employed in semi-supervised learning. In semi-supervised learning, one
often gives a set of labeled points, and we aim to learn the label on unlabeled points.
It is well known that in order to make semi-supervised learning work, there should be
some assumptions on the dependency between the prediction function and the marginal
distribution of data (Zhu 2006). In the last decade, the manifold assumption is widely
adopted in semi-supervised learning, which states that the prediction function lives in
a low-dimensional manifold of the marginal distribution. Under the manifold assump-
tion, previous studies focus on using differential operators on the manifold to construct
a regularization term on the unlabeled data. These methods can be roughly classified
into three categories: Laplacian regularization, Hessian regularization, and parallel field
regularization.
We first briefly introduce semi-supervised learningmethods with regularization. LetM

be a d-dimensional submanifold in R
m. Let U ⊂ M denote the set of labeled points and
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let fl denote the label function defined on U. Given U and fl, we aim to learn a function
f : M → R defined on the whole manifold. A framework of semi-supervised learning
based on differential operators can be formulated as follows:

arg min
f∈C∞(M)

E(f ) = R0(f , fl) + λ1R1(f )

where C∞(M) denotes smooth functions on M, R0 : R × R → R is the loss function
and R1(f ) : C∞(M) → R is a regularization functional. For simplicity, we consider R0
as a quadratic loss function and write it as R0 = ‖δU(f − fl)‖2, where δU is an indicator
function. That is δU(x) = 1 if x ∈ U , δU(x) = 0 otherwise.
R1 is often written as a functional norm associated with a differential operator, i.e.,

R1(f ) = ∫
M ‖Df ‖2 where D is a differential operator.

Laplacian regularization

IfD is the covariant derivative∇ on the manifold, then R1(f ) = ‖∇f ‖2 = 〈f ,�f 〉 becomes
the Laplacian regularizer. The objective function can be written as follows:

arg min
f∈C∞(M)

E(f ) = ‖δU(f − fl)‖2 + λ‖∇f ‖2.

Taking derivatives of E(f ) with respect to f, we have:
∂E(f )

∂f
= 2

(
δU(f − fl) + λ�f

)
.

By the optimality condition ∂E(f )
∂ f = 0, we have:

f = (IU + λ�)−1 δU(fl),

where IU is identity operator with support on U. That is IU(f )(x) = 1 if x ∈ U ,
IU(f )(x) = 0 otherwise. In discrete cases, one constructs a nearest neighbor graph over
the labeled and unlabeled data to model the underlying manifold structure and use the
graph Laplacian (Chung 1997) to approximate the Laplacian operator. A variety of semi-
supervised learning approaches using the graph Laplacian have been proposed (Belkin
et al. 2004; Sindhwani et al. 2005; Zhou et al. 2003; Zhu et al. 2003). It might be worth not-
ing that one can also add another regularizer on f defined by its kernel norm. Such ideas
have been discussed in Belkin et al. (2006).

Hessian regularization

IfD is the Hessian operator, then R = R1(f ) = ‖Hessf ‖2 becomes the Hessian regularizer.
The objective function can be written as follows:

arg min
f∈C∞(M)

E(f ) = ‖δU(f − fl)‖2 + λ‖Hessf ‖2.

The Hessian-based methods in unsupervised learning were first proposed in Hessian
eigenmaps (HLLE; Donoho and Grimes 2003). The important feature of Hessian is that it
preserves second-order smoothness, i.e., preserves the distance or linearity. Steinke and
Hein (2008) extend the Hessian regularizer to Elles energy, which is applied to the prob-
lem of regression between manifolds. Kim et al. (2009) further propose to employ the
Hessian regularizer in semi-supervised regression using an alternative implementation
for approximating the Hessian operator in HLLE.
The recent theoretical analysis by Lafferty and Wasserman (2008) shows that using the

Laplacian regularizer in semi-supervised regression does not lead to faster minimax rates
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of convergence. They further propose to use the Hessian regularizer when the Hessian of
the prediction function is consistent with theHessian of themarginal distribution. Amore
recent work (Nadler et al. 2009) shows that when there are infinite unlabeled data but only
finite labeled data, the prediction function learned by using the Laplacian regularizer can
be globally smooth but locally bumpy, which is meaningless for learning. These results
indicate that the smoothness measured by Laplacian, i.e., the first-order smoothness, is
way too general in semi-supervised regression.

Parallel field regularization

Although Hessian regularizer might have a faster convergence rate, but the estimation of
the Hessian regularizer is very difficult and sensitive to noise. Lin et al. (2011) proposed
to ensure the second-order smoothness by penalizing the parallelism of the gradient field
of the prediction function. The objective function of parallel field regularization (PFR; Lin
et al. 2011) can be written as follows:

arg min
f∈C∞(M),V

E(f ,V ) = ‖δU(f − fl)‖2 + λ1R1(f ,V ) + λ2R2(V ), (8)

where R1(f ,V ) = ‖∇f − V‖2 and R2(V ) = ‖∇V‖2HS.
Taking derivatives of E(f ,V ) with respect to f and V, we have:

∂E(f ,V )

∂f
= 2

(
δU(f − fl) + λ1�f + λ1div(V )

)
,

∂E(f ,V )

∂V
= 2

(−λ1∇f + λ1V + λ2∇∗∇)
.

By the optimality condition, we can rewrite it as follows:(
IU + λ1� λ1div

−λ1∇ λ1I + λ2∇∗∇

)(
f
V

)
=

(
δU fl
0

)
(9)

In discrete cases, Lin et al. (2011) gives a systematic way to approximate these differen-
tial operators. We list them in Table 1. The detailed definitions of discrete matrices can
be found in Lin et al. (2011). It might be worth noting that VDM (Singer and Wu 2012)
provides another way of the approximation of the connection Laplacian operator. The
similarity and differences are discussed in Lin et al. (2013).

Conclusions
In this paper, we discussed differential operators defined on functions and on vector
fields. These differential operators include Laplacian, Hessian, covariant derivative, and
the connection Laplacian. We introduced the background of relevant geometric con-
cepts. Then, we discussed the problem of dimensionality reduction and semi-supervised
learning by using these differential operators. The discussion not only focused on their
continuous counterpart but also on their discrete approximations.

Table 1 Discrete approximation of differential operators

Differential operators Discrete approximations

Gradient operator ∇ C

Divergence operator div −CT

Connection Laplacian ∇∗∇ B

Metric tensor g G
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Vector field-based methods are developed recently, which have been proved efficient
in many applications including multi-task learning (Lin et al. 2012), manifold alignment
(Mao et al. 2013), and ranking (Ji et al. 2012). However, there are still many problems
unknown and worth to explore. The first is the convergence of the approximation of the
differential operators. The second is the theoretical explanation of vector field regulariza-
tion. Preliminary work indicates that there is a deep connection between the heat flows
on vector fields. The study of heat equation on vector fields and machine learning would
be an interesting topic.
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