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Abstract

We pursue a threefold purpose in this paper. First, we suggest a Kullback-Leibler
formulation for developing a statistics and making discriminative projection for case-
control studies, based on which existing typical methods are revisited and then further
extended to matrix-variate counterparts. Second, we propose a bi-linear matrix form,
based on which multivariate discriminative analysis and logistic, Cox, and linear mixed
regression are extended into their matrix-variate counterparts. Third, we systematically
address the necessity, feasibility, and methodology of integrative hypothesis tests (IHT)
from the complementarity of model-based test and boundary-based test (BBT) in the
data (D)-space, statistics (S)-space, and probability (P)-space. We elaborate four IHT
components (modelling, comparison, classification, and assurance) and summarise
four IHT types in the D-space. Then, we extend the existing efforts on multivariate tests
to BBTs in the S-space. Particularly, we extend the classic univariate one-tail z-test to the
multivariate ones, which is then applied to a multivariate sample-pairing delta (SPD)
test for detecting a collective inclining dominance. Also, we propose a SPD
discriminative analysis that extends this SPD test. Moreover, we propose a multivariate
bi-test that tests the classic null and also a null about the inference reliability due to test
space complexity, including a further development of Fisher combination. Finally, we
suggest possible applications for gene expression biomarkers and
exome-sequencing-based joint single-nucleotide variant (SNV) detection.

Keywords: Kullback divergence; Discriminative projection; Logistic, Cox, and linear
mixed regressions; Bi-linear form; Boundary-based test; Integrative hypothesis test;
Bayesian Ying Yang; Statistics integration; Dependence decoupling; Bi-test; Test
reliability; Controlling testing complexity; Inclining dominance; Gene expression; Joint
SNVs detection

Background
Typically, multivariate statistical analysis and related machine-learning studies consider
a basic sampling unit in a vector ;. Though an entire data set may be regarded as given
in a format of matrix that consists of x1, - - - , Xy as the columns, each statistics is com-
puted from an assembly of vector samples and featured by vector inner product as a basic
modelling unit.

Nowadays, not only rapid developments of data acquisition techniques (DePristo et al.
2011; Koboldt et al. 2013) demand that data with a matrix X; as shown in Figure 1 as
a basic sampling unit be considered, but also ever-increasing computing ability makes

such a demand possible. One typical field that longs for such demands is featured
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Figure 1 A set of matrix-variate samples.

by image-based tasks, of which a basic sampling unit is naturally a matrix though
traditional studies consider sample vectors to simplify computation. However, this sim-
plification will miss some useful structural information, e.g. considering the rows of X;
as independent and identically distributed (i.i.d.) samples will miss the dependence cross
rows. Also, recent efforts on big-data analyses eagerly demand statistical approaches for
matrix-variate-based data analysis.

Another field that demands matrix-variate-based analyses is computational biology or
particularly computational genomics. Typically, expression profiles of basic units (e.g.
gene, miRNA, IncRNA) are analysed via vector samples (e.g. via rows or columns of
expression matrix) (Simon et al. 2003). Advanced studies also examine expression profiles
under different conditions (Ji et al. 2009; Persson et al. 2011) and across different time
points (Bar-Joseph et al. 2012) and thus demand that sampling units in matrix format
or even a high-dimensional array are considered. In a genome-wide association study or
exome-sequencing analysis (DePristo et al. 2011; Gibson 2012; Purcell et al. 2007), though
a majority of methods is still featured by vector-variate analysis, there are already some
efforts made on matrix-variate-based data analysis.

In the rest of this paper, we start at providing a background and review on the related
topics and methods, including the following:

e Two-sample test and Hotelling statistics.
® Logistic regression, Wald test, and Rao’s score.
e Discriminative analyses and integrative hypothesis tests (IHT).

Cox model and linear mixed model
Then, we pursuit a threefold purpose as follows:

(1) A Kullback-Leibler-divergence-based formulation for developing statistics and dis-
criminative criterion for the case-control studies, based on which existing typical
methods are revisited and extended to their matrix-variate counterparts.

(2) A bi-linear matrix form, based on which discriminative analysis, logistic regression,
Cox model, and linear mixed model are extended into their matrix-variate counterparts.

(3) A systematic investigation of the necessity, feasibility, and implementing methods of
IHT from the perspective of model-based test (MBT) versus boundary-based test (BBT)
in the three levels of space, namely the data sample space (D-space), the statistics space
(S-space), and probability space (P-space).
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More specifically, the above third one consists of the following:

e The complementarity of MBT versus BBT in the D-space, the basic IHT components
(modelling, comparison, classification, and assurance), and four types of IHT.

e Bayesian Ying Yang (BYY)-harmony-learning-based IHT formulation for
coordinately optimising the performances of task A, task B, and task C in the D-space.

e The MBT vs BBT perspective in the S-space, especially extensions of the existing
efforts on the integration of multiple statistics to the S-space BBT, with the help of
dependence decoupling.

® A S-space BBT-based extension of univariate one-tail z-test for testing the null of
multivariate zero mean, which is then applied to multivariate sample-pairing delta
(SPD) test for detecting a collective inclining dominance.

e A SPD discriminative analysis that not only improves the multivariate SPD test but
also further extends it to matrix-variate ones.

¢ A multivariate bi-test on both the classic null and also a null about test reliability by
controlling the testing complexity, including a further development of the Fisher

combination.

Finally, we discuss several possible IHT applications for expression-profile-based
biomarker finding and exome-sequencing-based joint single-nucleotide variant (SNV)
detection.

Hypothesis tests for case-control studies

Most efforts in computational genomics and generally computational biology involve
case-control studies. For a case-control study, we are given two populations of vector-
variate samples X, = {X¢,,t = 1, -+ , Ny}, @ = 0, 1, where the one with = 1 is called
the case population while the one with @ = 0 is called the control population. The task of
a hypothesis test is examining a rejection of the following null assumption:

Hy : there is statistically no difference between two populations of samples, (1)

for which a statistics is computed from the samples to test the opposite assumption H;
that there is a significant difference between the two populations.

A typical example is testing whether Hy breaks on two populations of samples from a
multivariate Gaussian distribution G(x|c, X) with the mean vector ¢ and the covariance
matrix X, with help from the following Hotelling statistics (Hotelling 1931):

_ NoNi

72 (c1 — )= e1 — co), )

where N = Ny + N, and ¢, ¢ are the mean vectors of the case and control populations,
respectively. Also, the covariance matrix is assumed to be ¥ = ¥y = ¥;.

Generally, we evaluate the difference between two populations based on population
modelling by a parametric model g(x|6), that is, firstly modelling each population of
samples and then evaluating the overall difference between two resulted models. The per-
formance is measured by the p value that describes the false alarm probability of judging
that Hy by Equation (1) significantly breaks. Such efforts are usually referred as model-
based tests or sometimes called model comparison or class comparison (Simon et al.
2003).
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Another typical example is logistic regression. Rewriting the above two populations of
samples into a set of paired samples {x;, w;},t = 1,--- ,N with wo; = 1 and w; = 0
indicating the sample x; from the case and control population, respectively. We let w; be

regressed by «; in the following conditional probability:

plorlxs, 0) = s(Z)™ [1 — 5],
3)

— — T — .
St =Yt +C Y =W Xp, 8(r) gy

All the unknowns in a notation 6 are estimated by maximising the following likelihood:

N
L =[]p@lx.0), @)
t=1

which cannot be analytically solved due to the nonlinearity of s(r) and are usually han-
dled by a gradient-based iterative algorithm (Hosmer et al. 2013). The test of the null
assumption by Equation (1) becomes testing the null assumption:

H(): W=0, (5)

where w is a subset of 0. It is typically made by either the Wald test or the Score test (Engle
1984), both of which are computed from one or both of the following statistics:

dlnL 92InL

A(w) = Iw) = —

(6)

ow owow’
where A(w) is called the score vector, and I(w) is called the Fisher information matrix.

The Wald test considers the following:
s=I1"°)w, w= arg max L, 7)
w

as a testing statistics that has an asymptotic normal distribution under the null assump-
tion.
While the Rao’s score (or simply the score test and often known as the Lagrange

multiplier test) considers:
s= AT W AGW), (8)

as a testing statistics that has an asymptotic distribution of x ,3, where k is the number of
constraints imposed by the null hypothesis. It degenerates to x? when w consists of only
one parameter.

This logistic regression examines the difference between two populations via firstly
building up a hyperplane boundary and then tests Equation (5) that directly aims at
whether the boundary depends on variables in consideration.

Discriminative analyses and integrative tests
Other than directly aiming at the boundary, a different aspect of logistic regression is that
we can use p(w¢|xy, 0) by Equation (3) to classify each sample by:

wy = arg maxyp(wlxg, 0). 9)
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Equivalently, the same result comes from the hyperplane boundary ¢; = 0 with ¢; given
in Equation (3) such that samples are classified into its two sides. The outcome is the
following decomposition:

X =xPux9 xo=xP ux?. (10)

That is, the case set X] is separated into a subset X{l) with unchanged labels and a subset
X{O) of samples that are relabelled as control samples, and similarly, the control set Xj into
X(()O) with unchanged labels and X(()l) relabelled as case samples.

Actually, seeking a hyperplane boundary is the goal of linear discriminative analyses
(LDA). One classic example is the Fisher discriminative analysis (FDA). For separating
samples of two populations, the FDA seeks a projection y; = w’x; to map each vector x;
into a univariate y; such that:

(=2
max J,(w), Jy(W) = ——————, (11)
w y2 y2
o0y + @107
where for w = 0,1 we have
Ny
o = & = Do Ve
w — ’ w — »
N N,
Yt = WTxt,wr (12)
2
Nﬂ)
y2 Zt:1 (yt,w - cf,))
o, = .
Ny

On the one-dimensional y;, it follows from Equation (2) that 7% = %]y and that FDA
is equivalent to seeking a direction w along which two populations differ mostly.

On a small size of samples, the resulted w by FDA may suffer the well-known overfitting
problem, for which efforts have been made on learning a linear boundary in the literature
of machine learning. One classical method is the support vector machine (SVM) (Suykens
and Vandewalle 1999; Suykens et al. 2002).

Widely adopted in the studies of pattern classification and machine learning, the per-
formance of discriminative analyses is typically measured by the misclassification rate of
Equation (10), featuring the separation or overlap of two populations around the bound-
ary and reflecting the confusing chance incurred by a decision or prediction (sometimes
called class prediction (Simon et al. 2003)).

The performance of discriminative analyses may also be measured by 7 that considers
the separation of two populations of y; = w’x;. Monotonically varying with T2, the p
value may be obtained by a univariate ¢-test. Here, the performance is measured by only
considering the salient difference between two populations along the normal direction of
the boundary, instead of considering the overall difference in the entire space as addressed
after Equation (2).

Alternatively, see Equation (31) in (Xu 2013a), the performance of discriminative anal-
yses may be also measured by a statistics that jointly considers the separating boundary
and its outcome by Equation (10).

Since there are different choices for evaluating the difference between two populations,
we are motivated to examine whether they can be integrated for a better evaluation. The
name of IHT was previously advocated in (Xu 2013a, 2013b) for a joint consideration
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of the misclassification rate and the p value about the overall difference. This paper will
further proceed along this direction.

Cox regression and linear mixed model

Survival analyses consider the relation of the observed time y; that a subject ¢ passes
before some event occurs to one or more covariates in x; that may be associated with y;.
The Cox model for survival analysis (Cox and Oakes 1984) describes the hazard ratio as
follows:

he(t) =€, yr = w'xy, (13)

which shares the common part y; = w’

x; with Equation (3). The difference is that w is
estimated via maximising the following partial likelihood L(w):

w'X;

m‘st, Lw) = 1_[ (14)

fap=] 2Ty >y, ev'xe
Again, we can test Hy by Equation (5) with the Wald test by Equation (7) or Rao’s score
test by Equation (8), with help getting A(w), I(w) still by Equation (6) but with L given by
the above partial likelihood L(w).

Actually, the core part y; = w’x; of Equations (3) and (13) is also the core part of the
classic multivariate linear regression y; = w!x; + e; with w estimated by minimising
e

Denoting y = [yl,-u ,yN]T, e = [e, ,en]T,and X = [x1,---,xn]7, we may
rewrite y; = w!X; + e; into y = Xw + e as a degenerated case of the following linear
mixed model (Demidenko 2013) :

y=Xw+Zf+e,
f~ G(f|0,K), e ~ G(e|0,R),

(15)

where Z is a design matrix and f is a random effect vector. We may use the existing
methods to estimate w, K, R (Demidenko 2013) and then test w = 0 via the Wald test by
Equation (7) or Rao’s score test by Equation (8) but with the likelihood L replaced by:

L = G(y — Xw|0,ZKZT + R). (16)

Moreover, an N x 1 vector y may be further extended to a N x m matrix with one
dependent variable extended to m-dependent variables. Accordingly, w, f, e are extended
to d x m matrices. As a result, we have:

Y =XW + ZF +E, (17)
where F = [fy,--- ,f,], and E = [e1,---,ey]. One typical case is that fj,--- ,f, are
mutually ii.d. with each f; ~ G (f;|0,K). Also, ey,--- , ey, are iid. with each e; ~

G (€0, R).

From inner product to bi-linear form

In many studies of multivariate statistical analysis and machine learning, a basic sampling

T
unit is a vector x; = [xil), e ,xgd)] , and the basic computing operation is the inner

product wT'x, that is linear with respect to the elements of x; and also of w. Though wix,
becomes XW in Equation (17), it actually consists of a set of vector inner products in
parallel.
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Efforts have been made in (Xu 2013a, 2013b) to extend this inner product to get a
matrix-variate discriminative analysis. Considering that a basic sampling unit is a matrix
X as shown in Figure 1, the inner product is extended into a bi-linear form:

m d
ye=wiXy =Y > w0y
i=1 j=1

m
= Z w <vTx§l)> =wix}, x] = X,
i=1

(18)

which is quadratic with respect to w® and v¥) but still linear with respect to the ele-
ments of X; and is featured by two consecutive layers of inner products. Similarly, we
may also have w’ X;v = vI'x? and 4} = X'w. We call such a matrix-variate-based basic-
computing operation a bi-linear form. This bi-linear form leads us to matrix-variate LDA
and factor analyses in (Xu 2013a, 2013b). Also, using matrix normal distribution, the
implementations are made by the Bayesian Ying Yang harmony learning (Xu 1995, 2015).

To get further insight, we directly extend the vector inner product into the following

matrix format:

m d
y; = vec! [O] vec[X;] = Z Z o(i’j)xgl’]), (19)
i=1 j=1
which is still linear with respect to the elements of X; but unable be decomposed into two
inner products, where vec[O] denotes the vectorisation of a matrix O.
Comparing Equations (18) and (19), we observe that the bi-linear form can be regarded

as constrained in the following structure :
0 = w9 or 0 = wv'. (20)

That is, the weighting along the rows of X; is unrelated to one along the columns of X;.
It significantly reduces the number of free parameters of 0 from md into m + d for w'¥)
and v/, which is favourable because we usually have a small-size N for a given sample set
X'n. However, it also suffers the limitation of being applicable only to the cases where the
dependence across rows of X; is not related to one along the columns of X;. To extend
such a limitation, further generalisations of bi-linear matrix forms will be proposed in
Equation (40).

Methods

KL statistics and matrix-variate tests

Given the case and control samples X, = {x¢,,t = 1,---,N, and v = 0,1} from a
parametric family g(x|0), all the unknown parts of the true value 6* are estimated under
Hy by Equation (1), e.g. by the maximum likelihood from Xy U X;. Also, we estimate &
from X; and test whether Hy breaks by the following formulation (see Equation (36) in

(Xu 2012a)):
skr = KL(q(x16%)]1g(x1)), with
21
KL(pllg) = / p1n 2 =
q(u)

from which the Hotelling T statistics (Hotelling 1931) and FDA are obtained as its special

cases.
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Alternatively, we may also rewrite Hy into
Hj : no difference between ¢g(x|61) and gq(x|6), (22)

with X; from g(x|6;) and Xy from g(x|6p). We estimate 6; from the case samples X;
and 6y from the control samples Xj by either the maximum likelihood or other learning
principles, and test Hy by the following case-control formula:

skr = KL(q(x[00)[lq(x|61)), (23)

which directly measures the discrepancy between the case population and control pop-
ulation and provides a general formulation for model-based tests. In contrast, sxz by
Equation (21) indirectly considers the difference of the case population from the pool of
both populations under Hy.

For the special case that g(x|0) = G(x|c, ¥), sz by Equation (21) and sxz by
Equation (23) are equivalent with merely a slight difference of a constant scale, resulting
in:

skL = KL(G(x|co, X)||G(¥lc1, X))

24
= 05Tr [(co — 1) (co—en)T 2*1] . 29

NoNi
No+N

statistics is covered as a special case of the general formulation by Equation (21).

It relates to the Hotelling statistics by Equation (2) via 72 = 2

skL, i.e. the Hotelling

The equivalence no longer exists when we consider other examples of g(x|0;) and
q(x|6p). Because the case population reflects an abnormal situation and thus has a dis-
tribution that is quite different from the control population; g(x|0;) may come from a
parametric family that is different from the one of g(x|0p). For an example, we may con-
sider a Gaussian for the control samples while a mixture of two Gaussians for the case
samples.

In addition to testing cp = c; as considered by the Hotelling statistics, we may use sgz
by Equation (23) to develop statistics for other null hypotheses of the type §; = 6;. For
examples, 67 could be a covariance ;.

Generally, we may use sgz by Equation (21) to develop a statistics for testing a general
relation given by a vector equation 4(6) = 0 that consists of one or several joint equations,
for which we estimate 6y from samples of Xy U X; subject to the constraint £(#) = 0
and estimate 0; from only the case samples X; without the constraint. The above type
65 = 0 is a special case () = 65 — 6] = 0. Also, the equality may be extended to several
subsets {07} that are equal to each other, with each 6} to be either of the mean vector c;
or a covariance X;. Even the simplest case 8° = 0, 6° C 0 has been widely studied. For
examples, 6° could be the variances for the variance analyses or w = 0 in Equation (5) for
logistic regression and Cox regression.

Not only Equation (21) provides a general formulation of developing a statistics for a
composite test, but also a bird view of the existing statistics for further understanding,
improvements, and extensions.

Simply with each vector « replaced by a matrix X, we can extend Equations (21) and (23)
to consider matrix-variate samples. Without losing generality, we focus on Equation (23)
and get:

skp = KL(q(X|60)[1(X161)). (25)
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We consider g(x|6) given by the following matrix normal distribution (MND) (Dutilleul
1999; Xu 2012a) :

e*O‘STr[Q‘l(X*C)TZ_I(X7C)]
(27‘[)0‘5”"d| b |0.5d | Q|0‘5m

where a matrix 2 describes the cross-column dependence of the matrix variate X, and a

NX|C,, %) = (26)

matrix X describes the cross-row dependence of X. This matrix distribution is equivalent
to a multivariate Gaussian distribution G(vec(X)|vec(C), ¥ ® 2), where ® denotes the
Kronecker product.

With each sample X; ., from N (X|C%, 2%, £%) under the assumption:

=3y =3, Q" = Qf = Qf, (27)
it follows from Equation (25) that we obtain:

sk = KL (N (XIC}, Q%, =) |IN (X|Cg, 2, %))
(28)
=1r[@r T (c - ) = (e - ),
as the matrix-variate counterpart of Equation (24), where parameters are typically
estimated by the maximum likelihood principle (Xu, 2015).

Generally, with help of Equation (25), we may also develop statistics for distributions

other than matrix normal distributions.

Model-based two-sample tests

The tests for Hy by Equation (22) are featured by comparing the difference between two
parametric models g(x|0;) and g(x|0p) on the entire domain of x. Its basis is modelling
the case population by g(x|6;) with its parameter 6, estimated from X; and modelling the
control population by g(x|6p) with its parameter 6y estimated from Xj. Thus, these tests
are called model-based two-sample tests or model-based tests in short wherever there is
no confusion caused.

Typically, a statistics s is considered to measure the difference between two models. The
bigger the value s is, the larger the difference is. We reject Hy when s takes a large enough
value s*, while the false positive probability of this rejection is called the p value.

Usually, how to get a statistics s from samples is task-dependent. It is typically a function
of the first- and second-order statistics that are random variables directly obtained from
samples of populations, e.g. see the Hotelling statistics by Equation (2). Equation (23)
provides a general perspective of getting such a statistics sx;, covering not only the first-
and second-order statistics but also ones beyond.

Actually, Equation (23) can be further generalised. Adding in the priorities o1, o¢ for
q(x|01) and q(x|6p), we have:

KL1o = KL(a1q(x|601)||eog(x|60))
= a1 KL(q(x|61)1g(x|60)) + o161, (29)

(231
or =In— =Inao; — Inay,
o

which describes the difference observed from the case side. From the control side, we

have also:

KLo1 = KL(aoq(x]60)||e1q(x101)) = agKL(g(x|600)|1g(x]61)) — aodr.
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We further get their average and difference as follows:

KLym =

)

KLio + KLoy _ / a1q(x|01) — apgq(x|6o) In Ot1q(xl91)d
2 2 Oloq(x|90)
a1q(x|61)

—————dx,q(x]0) = a14(x|61) + aogq(x|6p).
aoq(x|6p)

KLgit = KL19o — KLo1 = /q(x|9) In

(30)
For g(x|0) = G(x|c, X), we have:

Klio =1 ((Sa,g n acTZ;lac) ,KLo1 = oo (—30,,2 n 5cT2(;15c),

(1 — @0)8e,x + 8T T8¢
2
Sl = a3y + a1 8c = (61 — €0)/v/2, 86,z =In

I<Lsum =

KLait = 80,5 + 6" 1 71 — a0 35" sc,

(03] 1 (04}
—In
DAL

(31)

from which we observe how an overall difference is structured from the statistics on indi-
vidual differences. For KLg,m, the role of anti-dispersion difference 8,5 is cancelled while
the position difference dc is averaged. For KLgjs, the role of 4,5 is summed up while the
position difference c is cancelled. In other words, the roles of KLg,, and KLgjf are com-
plementary. According to the nature of tasks, we may use either of them separately or the
both of them jointly.

The performance of examining Hy by Equation (22) is typically evaluated via the p value,
which depends on not only how p is approximately estimated but also how well g(x|6p)
models Xp and g(x|6¢1) models X;. A poor modelling makes the resulted p unreliable.
Thus, the performance evaluation should also consider its corresponding modelling error
or generally the likelihood:

L = In [aoq(Xo0|60) + c1q(X1|61)]. (32)

The modelling error depends not only on what type of model is used but also on an
appropriate model complexity. Using a model with a big model complexity can lead to
an over-optimistic result, i.e. suffering an over-fitting problem. To remedy it, we need
to consider either an average of modelling errors on training and testing samples (e.g.
by cross validation (Stone 1974)) or approximated generalisation error by one of the
model-selection criterion (e.g. BIC (Schwarz 1978)).

Jointly, model-based two-sample tests involve two tasks, that is, the first two tasks sum-
marised in Table 1. Task A is a typical topic of machine learning, from which those existing
studies can be adopted, while task B is a typical topic of a statistical test, with its corre-
sponding ep being a nonnegative measure that monotonically decreases towards zero as
s tends towards a large value.

It is an open challenge to integrate ¢4 and ep into one objective to optimise because
of lacking investigations on how to combine them. A preliminary study has been made
empirically with the help of the 2D scattering plots of ¢4 versus ¢p as illustrated in
Figure 2. Each scattering point denotes a performance pair (g4, €g), associated with one
miRNA on the samples for gene expression. Those points located near the origin (e.g.
those in the orange colour) act as the interested candidate points.
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Table 1 Four Tasks of Integrative Hypothesis Tests

Tasks

Description

Task A (modelling)

Task B (comparison)

estimate 6,, such that g(x|6,,) models the corresponding population of samples, with the
performance evaluated by its corresponding &4, e.9., the average error or generalisation
error.

develop a statistics s based on the resulted models to test Hy by Equation (22), with the
performance evaluated by its corresponding ez that measures the difference between
two populations, e.g., the p-value.

Task C(classification)

classify each sample to either @ = 1 or 0, with the performance evaluated by its corre-
sponding ec, e.g., either the rate of incorrect classification by Equation (44) or alternatively
the corresponding p-value obtained by a test based on a statistics by Equation (47).

Task D (assurance)

test whether a reliable separating boundary exists between the two populations of
samples, with the performance evaluated by its corresponding &p.

Matrix-variate discriminative analysis

As addressed around Equation (11), the classic FDA seeks a projection y; = w!x; to

maximize Jy. Moreover, it follows from the bi-linear form by Equation (18) that a matrix-

variate discriminative analysis is obtained by:

{w*,v¥} = arg maxw,y J(W,v),J(w,v) =

w! (Cf — G w (G~ )" w

wlZ,w ’
VT Cx_Cx TWWT Cx_Cx v N,
=) o (Y 5o 3 30— )W () (3
w=0,1t=1

Yw

B

)

Z Z (Xtw — Cf))TWWT(Xt,w -C)),

w=0,1 t=1

which may be solved by iterating:

fix v, get w* oc 1 (C] — CF) v, w = w* /|| w*|],

fix w, get v* oc B30 (CF — C3) w,v = v¥/IVEI,

(34)

Figure 2 2D scattering plots for joint analyses.

A
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Generally, the bi-linear form by Equation (18) may also be rewritten into the following
matrix format:

Y, =VvIix,w, (35)

with a m x m, matrix V and a d x ds; matrix W. It degenerates back to Equation (18)
when m; = 1,d; = 1. Mapping into one variable y; may lose too much discriminative
information. Instead, Equation (35) maps X; into either of a size-reduced matrix, a column
vector, or a row vector according to practical problems, e.g. from not only genomics data
in genetic biology but also image or table data in various tasks of big data analyses.

With X, replaced by Y;, equations from Equations (25) to (29) are directly applica-
ble. If X; comes from an MND, Y; comes from an MND too. Accordingly, Equation (33)
becomes:

{W*, V*} = argmaxw,y J(W, V),
T (36)
v, vy =12 (- ) 2 A - ),

where the parameters are given in a way similar to Equation (28). Also, its solution may
be obtained by iterating:

FixingW, get V by solving Vy,J(W, V) =0, (37)
FixingV, get W by solving Vi J(W, V) = 0.

Actually, Equation (35) computes a set of the bi-linear matrix forms in parallel as
follows:

m d
k¢ k0 . .
Yt=[y§ )],yi D33 0D, o
i=1 j=1

Each yik’a above and the bi-linear form by Equation (18) suffer the limitation discussed
after Equation (20), which is relaxed with v¥) replaced by vlg) or vU'Y replaced by v?'e), ie.
adding another dimension by a subscript i.

Focusing on the former, we extend Equation (20) into:

0 = w9,
E’)is subject to a constraint, e.g. one of
Z,il v?) =1, Choice (a),

from a Gaussian density, Choice (b), (39)

1

from a Laplace density, Choice (c).

Accordingly, we extend Equation (18) into:

m d
o T
V= Z Z w(l)v?)xil,l) = Tr[diag[w] X, V] = wa;', X = [vlTxgl), e ,v,ixgm)] ,
i=1 j=1
T
V=lvi,--,vql,vi= [v?l)w-- ,VL@] , diag[w] = diag [w(l),-~~ ,w(’”)],
(40)

Page 12 of 39
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where Tr[A] denotes the trace of the matrix A.
Putting it into Equation (11) and considering choice (a) in Equation (39), we get
Equation (33) modified into:
{w*, V*} = argmaxy, v J(w, V), subject to : ||v;]| = 1,Vi,

wi(@ =) (=) w B 772 [diag [w] (C¥ — C3) V]

Jw, V) =

wls,w N, ’
v Y w01 2 Tr? [diag[w] (Xt,w — Cff,) V]
t=1
T No
ch=[vle®, i @] me = 30 Y e,
w=0,1 t=1
T
where 8x} , = [vlT (xila)) — C’Cf)(l)) o, vh (xﬁ,’fj — cif,(’”))] .
(41)
which may be solved by iterating:
fix w, get V bysolving VyJ(w,V) =0,
subjectto : |v;|| = 1,Vi. (42)
w*
fix V, get w*oc 2,0 (] — ), w= Tk
w

For simplicity, we may approximately ignore the coupling across different subscript i
and get:

O_1( . 0
VRS> (c1 — ), vi = vi/IVEDs

No
202 ¥ 3 (- af) (i -a)

w=0,1 t=1

(43)

This solution does not relate to w, and thus, the job is done after getting w* by
Equation (34).

Also, we may update V by a gradient-based approach via VyJ(w, V). Practically, a reg-
ularisation may be added on J(w,v) and J(w, V) via Gaussian priories on w,v, and V.
Alternatively, we may make sparse learning via Laplace priories on w, v, and V.

Being a complementary to model-based two-sample tests that considers Hy by
Equation (22) from an overall perspective of populations, we may also perform the clas-
sification task in Table 1 to evaluate the goodness of the decomposition by Equation (10),
measured by another quantity ec, e.g. the following rate of incorrect classification

#xV +#x©
egc=——. (44)
#Xo + #X,

Classically, an optimal classification is given by:
@ = arg max(oq(£16)1, (45)

where & could be either of x; and X; or the corresponding projections y; and Y;. Mapping
samples into the projections helps to reduce the dimension of #; and X; for tackling the
overfitting difficulty of task A in Table 1, especially when the size of samples is not large
enough. Also, it facilitates visualisation of two populations in a low dimension (especially
below 3D dimension) such that classification is made with human interaction.
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Boundary-based tests

Actually, the FDA by Equation (11) finds w that defines the normal direction of the
best discriminative hyperplane, as shown in Figure 3. In addition to Equation (45), the
hyperplane often acts as a separating boundary as follows:

glx,w) = wix+wo=wl(x—pn) =0,
by which «x is classified into

a case sample, if gx,w) >0, (46)
a control sample, if g(x,w) < 0.

That is, it performs task C to get the decomposition by Equation (10) on which we may
directly get the measure ec by Equation (44).

Alternatively, testing Equation (1) may be made by the following statistics from
Equation (10):

#x P+ #x
ST XDy ax©”
#xX D 4 #xy”

ors = ——-——— .
#xgD + #x”

(47)

There are also two other choices in Table 2. Choice (1) is a model-based test for task
B from the perspective of one-dimensional samples of y; = w’x;. Focusing on a most
discriminative direction, this test puts attention only on salient differences. As to be
addressed later in Table 3, the test can be made together with testing Hy by Equation (5)
such that the rest of the entire sample space is taken into consideration.

Choice (2) in Table 2 provides a statistics for task B on samples without dimension
reduction. The statistics sg comes from considering that samples of X' ), X(()O) should be
distant from the boundary (as illustrated by two blue arrows in Figure 3) while samples
of X(()l), X%O) should not be far from this boundary (see two red arrows). Actually, sg is a

case '.4" ©

Figure 3 Linear boundary-based statistics.
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Table 2 Two Boundary based tests for Task B

Type Description
(1) on the projected samples of y; = w'x;, we use the one dimensional case of Equation (24)
or the Welch's t-test to test Equation (1) merely along the normal direction of the boundary.
) measuring the distances of samples from a separating boundary, we consider
w' (x—c) g
2@ |
Sp = g=>0.

w! (x—cp) !
ZXEX(()UUX-(‘O) | [Iw| 19+ vs

with g=2 for the square distance, g=1 for the Euclidean one.

special case of the ones given by Equations (26) and (30) in (Xu 2013a). The only difference
is that yp > 0 is added here to trade off the contribution from X(()l) U X%O).

Both two choices in Table 2 are based on the boundary (i.e. either Equation (10) or y; =
wTx;) and thus are called boundary-based two-sample tests or BBT in short. Different
choices of BBT are also coupled with how w is obtained; see some examples outlined in
Table 4.

Replacing Equation (11) with the matrix-variate FDA by Equation (33), we get the pro-
jection y; = w! X;v column by column along the direction w and row by row along the
direction v. With every appearance of x replaced by x; = X,v, all the above studies directly
apply. Similarly, we may also consider the dual representation y; = vIx? with ¥/ =
XI'w to get a linear separating boundary featured by v. It follows from Equations (19)
and (20) that w and v jointly form a linear boundary by vec[O] to separate samples of
vec[X;].

Furthermore, extension can be made on the generalised bi-linear form via Equation (40)
and Equation (41), with each « replaced by & given in Equation (40).

Extensions can be also made on the generalised bi-linear form by Equation (35). Sam-
ples of two populations are projected into a dimension-reduced matrix ¥; = VX, W,
and then, a matrix-variate Hotelling test can be made by Equation (28) with X; replaced
by Y; and the subscript x replaced by y, where the matrices W, V actually take the roles of
the boundary.

Table 3 Four Types of Integrative Hypothesis Tests

Types Description
Type-1 For Task A, each of two populations is modelled by a parametric model, with ¢4 measured
(model based IHT) by the negative log-likelihood by Equation (32) or its extension to generalisation error. For

Task B, a model based test is made to compare the difference between two parametric
models, with eg by the corresponding p-value. For Task C, we get the classification by
Equation (45), with ec by Equation (44) or the p-value by a BBT via a statistics obtained
from Equation (10).

Type-2 A separating boundary is modelled by a hyperplane with its normal w, based on which
(boundary based Task D is handled by a boundary existence test by Equation (5) with ep measured by the
IHT) corresponding p-value. For Task C we get the classification by Equation (46) with ec by

Equation (44) or alternatively the corresponding p-value obtained by Equation (47), and
for Task B we get the p-value by one of two BBT choices in Table 2.

Type-3 Mix the above two types with two populations and their separating boundary all in para-

(mixing IHT) metric models. A basic one uses &4, &g from Type-1 and ec, ep from Type-2. The other uses
ec, ep from Type-2 while g4, €5 are modified by Equation (58).

Type-4 Instead of mixing, the parametric models are jointly learned for two populations of sam-

(Ying-Yang IHT) ples and their separating boundary. One example is the BYY harmony learning based

formulation to be introduced after Equation (60).
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Table 4 Some choices for obtaining w

Choice Description

(a) get w via FDA by Equation (11), as addressed in the previous subsection.

(b) estimate w by maximizing L by Equation (4), as to be addressed in the next subsection.

(c) get w as the normal direction of a separating hyperplane by one of machine learning
3855)aches, e.g., support vector machine (SVM) (Cortes and Vapnik 1995; Suykens et al.

Matrix-variate logistic regression

Testing Hy by Equation (5) has been widely studied in the literature of logistic regression.
Actually, the role of this w is the same as the one in Equation (46), i.e. a discrimina-
tive boundary that separates every sample into either ® = 1 or @ = 0. Thus, the
choices in Table 4 can be cross-utilised for a mutual benefit, e.g. getting w via FDA by
Equation (11) is relatively easy to compute and thus provides an initialization for estimat-
ing w by Equation (4), while the advantage of Equation (3) over FDA is that dummy or
design variables may be taken into consideration for learning w, e.g. we extend {; = y;: +c¢
in Equation (3) into:

G=y+tzt+c zt = bTEp (48)

where &, consists of dummy variables. Moreover, random effects may also be added, in a
way similar to that of the linear mixed model by Equation (15).

Testing Hy by Equation (5) is typically handled with the Wald test by Equation (7) or
Rao’s score test by Equation (8), for which the score vector and the information matrix are
given as follows (Pan et al. 2014):

N 1 N
AW) =) (@ —D)x—¢), c=+) X,
t=1

t=1

N
Iw)=d1-d) Y (x;—)x,— ), (49)
t=1
where @ denotes the mean of w;.

Being different from the BBT addressed in the previous subsection, testing Hy by
Equation (5) directly aims at whether a boundary w exists. Such a test is thus named
boundary existence test. It is widely known as a test for regression analyses. Also, we may
regard it as a two-sample test that is complementary to the BBT choice (1) in Table 2. The
two tests jointly cover the entire space of samples.

The boundary existence test actually tackles another essential problem of discrimina-
tive analysis, namely, task D in Table 1. Given two populations with a finite sample size, it
is not difficult to draw a boundary to separate them if there is no restriction on the com-
plexity of the boundary. However, a boundary with a high complexity will be unreliable
to separate new samples that come randomly from the same populations. To be reliable,
the boundary should have an appropriate complexity too. It follows from Equation (45)
that an optimal separating boundary is related to the models g(x|6;) and g(x|6p). In other
words, appropriate boundary complexity is related to an appropriate model boundary
complexity. Thus, task D and task A in Table 1 are coupled.

Typically, we consider a linear boundary because of its simple complexity. In the lit-
erature of pattern recognition (Cortes and Vapnik 1995; Cover 1965) efforts on whether
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samples of two populations are linearly separable by a hyperplane or a maximum-margin
hyperplane can be regarded as examples related to task D in Table 1.

Next, we proceed to consider matrix-variate logistic regression. Putting the case and
control samples into a paired set {X;, w;},t = 1,-- -, N, we extend Equation (3) with the
inner product y; = w’x, to be replaced by the bi-linear form by Equation (18) or its
extension by Equation (40).

Given V, the above studies directly apply when #} in Equation (40) replaces x; in
Equations 3, 4, 7, and 8. The task of learning w, V' can be made via the matrix-variate FDA
by Equations (34) or (42).

Alternatively, we may estimate w, V' via the maximum likelihood L by Equation (4) with
the advantage of taking the effect of covariates into consideration. With —L written as
J(w, V), we get it solved by Equation (37) with w replaced by W, e.g. implemented by the
following gradient-based updating (Hosmer et al. 2013):

whew — wold — Vo] (wold’ Vold) ,

(50)
Jew Vold — V] <wnew, Vold) ,
where 7,, > 0,7y > 0 are small learning step sizes.
Also, we may test the dual problem of Equation (5) as follows:
Hy: v=0, (51)

for the bi-linear form by Equation (18) simply with v replacing w in Equations 6, 7, 8, and
49. Similarly, extension may also be made to test Hy : v; = 0, Vi.
Moreover, we may also apply Equation (21) to develop a statistics as follows:

skt =Y KL(p(rlxr, 0%)||p(wilaz, 6)), (52)
t

with p(w¢|xe, 0) given by Equation (3), where 6* is estimated via maximising L by
Equation (4) under Hy by Equation (5) and 0 is estimated via maximising L by Equation (4)
without Hy.

Similarly, we may get a matrix-variate Cox regression with the inner product w’x;
in Equation (13) replaced by the bi-linear form by Equation (18) or its extension
Equation (40). Accordingly, we test the Hy by Equation (5) and the Hy by Equation (51),
using the Wald test with Equation (7) or Rao’s score by Equation (8) with A(w),I(w)
computed from Equation (6) but L given by the partial likelihood L(w).

Furthermore, the univariate y; can be extended into a vector or matrix Y;. One typical
example is a bi-linear regression of ¥; by Equation (35), that is we consider:

Y, = VIX,W +E, (53)

where E; is independent of X; and comes from N (Y; — vIX, W0, A,D) by Equation (26),
while both A, D are diagonal matrices.

Again, there are two choices to estimate W, V. One is the matrix-variate FDA by
Equation (36). The other is maximising the following likelihood:

N
L=Y"N(Y - V'XW[0,A,D). (54)
t=1
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Particularly, when A = Al,D = dI, we are lead to the following least square error
approach:

minJ(W, V), J(W,V) =
W,V

N
3 1 [(Yt —VTXw) (Yo = VX W) T} , (55)
t=1
which may be again handled by Equation (37) with w replaced by W.

It can be observed that Equation (53) is an extension of Equation (17) with F = 0. On
the other hand, we may extend Equation (17) into a bi-linear extension as follows:

Y = VIXW + ZF + E, (56)
which degenerates to:
y=VIiXw+Zf +e, (57)

as a bi-linear mixed model extended from Equation (15).

Integrative hypothesis test

Discriminative analysis and testing of Hy by Equation (1) are made from either a model-
based perspective (e.g. performing task A and task B in Table 1) or a boundary-based
perspective (e.g. performing task C and task D in Table 1). Moreover, all the four tasks are
associated with another problem called feature selection, that is, selecting a number of
elements in x to form a subset x¢ such that one or more of the four tasks achieves a good
enough performance.

In the existing efforts, each of four tasks has been studied individually, with each having
its strength and limited coverage. However, performances of these tasks are coupled, and
thus, a best set of features for one task may not be necessarily the best for the others.

The complementary nature of task B and task C was preliminarily discussed in Section
VI in (Xu 2012a), where a model-based test for task B is named as A-test (a test in the
observed data domain) and a boundary-based test for task C is named as I-test (a test in
the inner representation domain). Under the name of IHT, good performances of task B
and task C are demanded jointly (Xu 2013a, 2013b). This paper further extends IHT to
include task A and task D.

We start at jointly optimising the performances of task B and task C. Its necessity and
feasibility are empirically justified, with help of the 2D scattering plots of eg by the p value
for measuring the performance of task B and ec by the misclassification rate for mea-
suring the performance of task C. A small ¢p indicates a big difference between g(x|6p)
and g(x|6;) from an overall perspective, and a small e¢ indicates a well classification of
samples from a separating boundary perspective. lllustrated in Figure 4 are two examples
obtained from one empirical study.

As indicated by the blue vertical dashed line in Figure 4, there are many miRNAs that
share a same small p value g but can take different values of misclassification e¢ in a big
range. Also, as indicated by the blue horizontal dashed line in Figure 4, there could be
multiple miRNAs that take a same misclassification but take different p values. In other
words, though the performance of one task is optimised, the performance of the other
can still be poor. Thus, we need to jointly seek the good performances of both the tasks,
i.e. IHT is necessary. On the other hand, it is observable from the red dots within the blue
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Figure 4 Necessity and feasibility of evaluating the performances of tasks 8 and C, on the samples of gene

expressions. A scattering point denotes a performance pair with the x-axis for p value and the y-axis for
misclassification, associated with one miRNA for (A) and two miRNAs for (B).
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circle in Figure 4 that there are indeed a few scattering points with each taking both a
small p value e and a small misclassification ec, i.e. it is also feasible to achieve the goal
of IHT too.

Such a 2D plot’s evaluation provides a tool for better joint performances of task
B and task C, by which we may interactively observe the configuration of scattering
points and locate the candidate points that are nearest to the origin of the coordinate
space.

Extensions can be further made to a joint evaluation of the IHT performance with
task A and task D also included, such that the strengths of different tests and methods
are integrated in a rather systemic way, for which we address four types of IHT in
Table 3.

From the model-based perspective, the first type is an extension of the one addressed in
Figure 2, with ec added in to get a 3D plots for a joint evaluation of ¢4, £, and ec. Instead
of Equation (45), we may get ¢c by some nonparametric classifiers, e.g. the classic KNN
classifier and the kernel classifiers (Williams 2003). Moreover, we are unable to handle
task D because the boundary involved here does not have an explicit expression to be
tested.

From the boundary-based perspective, the second type considers samples jointly by a
separating boundary and projected samples, evaluated by ¢p for the existence of bound-
ary, ec for the misclassification by the boundary, and ep for measuring the difference of
two populations either along the normal direction of the boundary or according to the
sample deviations from the boundary. Again, we may use a 3D plots for a joint evaluation
of eg, ec, and ep. However, it is difficult to handle task A merely based on the boundary.

The type of mix-modelled IHT combines the above two types to avoid the weak points
of each type. Two typical examples are listed in Table 3. One picks €4, eg from type (1)
and ¢, ep from type (2) for a joint evaluation. The other modifies €4, ¢ by taking the
outcome by Equation (10) of the boundary in consideration, with the original estimated
6o and 6 replaced by the following maximum likelihood estimation:

max g (Xéo)|9) and max 4 (X£1)|9> . (58)

Even better, we may estimate each 6, by the maximum likelihood on the entire set X of
samples but with the likelihood of each sample weighted by its corresponding posteriori
p(w|sample) by Equation (3).

BYY-harmony-learning-based formulation

The 2D plots and 3D plots only provides a preliminary tool for IHT, we need further
studies on not only appropriate combinations of multiple p values and misclassification
rates but also simultaneous optimisation of multiple measures. For the latter purpose,
the mix-modelled IHT in Table 3 is further extended via iteratively learning 6y and 0; by
Equation (58) to update the models g (Xé0)|90) ,q <X§1)|91> and also re-estimating the
boundary w, e.g. by a FDA method based on the updated models.

Leaving the task D for a future study, in the sequel, we further understand the task
of learning the models from a perspective of learning a Ying machine and the task of
learning the boundary from a perspective of learning a Yang machine, which leads to a
BYY-harmony-learning-based formulation for IHT.
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We start from revisiting Equation (29) from an IHT perspective. From a14(x|0;) =
q(x]60) — aoq(x|6p), we consider the task B by the following measure:

KLio = KL(e14(xI61)llaoq(xIf0)) =
- / c1q(x16) In [orr g (xI6)dx — €€
=L — (ef; +e¢ip)

L = /Q(Xle) In [@14(x|61)]dx,
¢ = f ag(x|6;) In [a</>q(x|9,~)]dx,

from which we observe that a large K19 comes from a large L that reflects a good mod-
elling of 14(x|61) (i.e. a good performance of task A) and a small confusion error € ; +€{
that is closely related to a small misclassification (i.e. a good performance of task C). In
other words, three tasks are coordinately optimised.

However, a good modelling on the control samples has not been taken in the consider-
ation of KL19, which may be further improved by considering:

Li+ Lo
Ko = 210 5, 1),

Ly = / q(x10) In [aoq(x]6p) |dx. (59)

From this KLgym, we need to get 6, » = 0,1 by the ML learning. In other words, KLgym
merely takes a role of evaluating the performances of task B and task C, but do not have
a port to accommodate samples for estimating 6, ® = 0, 1. Favourably, such a port is
provided in the BYY harmony learning such that task A, task B, and task C are all jointly
implemented.

Firstly, proposed in (Xu 1995) and systematically developed in the past two decades,
the BYY harmony learning on typical structures leads to new model selection criteria,
new techniques for implementing learning regularisation, and developing a class of algo-
rithms that implement automatic model selection during parameter learning. Readers are
referred to (Xu 2010, 2012b, 2015) for the latest introduction about the BYY harmony
learning.

Briefly, a BYY system consists of a Yang machine and Ying machine corresponding to
two types of decomposition, namely, Yang p(R|X)p(X) and Ying g(X|R)q(R), respectively.
The data X is regarded as generated from its inner representation R that consists of latent
variables Y and parameters 6. The harmony measure is mathematically expressed as
follows:

Hpllg) = /p(RIX)P(X) In[¢(X|R)q(R)] dXdR. (60)

Maximising this H(p||q) makes this Ying Yang pair not only best matched but also
have the least complexity. Such an ability can also be further observed from several
perspectives (see Section 4.1 in (Xu 2010)).

Applied to a14(x]0;1) and apq(x|6p), we have:

Hpllp = > f P(@lx)p() In[0uq(x16,)] dx,

w=0,1
g (X|6,)
w=0,1 wq(x(6,)

(61)

plolx;) = >
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where p(x) provides a port to accommodate samples {xt}]t\[: | via an empirical p(x) =
% > 8(x — x¢) with §(x) being the Dirac delta, which thus makes it possible to estimate
0w, w = 0,1 via maximising H(p||q).

It follows from p(0|x;) + p(1]x;) = 1 that we get:

Hpllg) = L + 11 — (e, +lL),
1t = / (0 In [ (x10)]dx o)
‘35 = /P(ﬂxt)P(X) In [o;9(x|6;)]dx.

Approximately considering p(x) ~ q(x|9), egl + e{{o ~ e + €] and LII{ + L{){ ~ L+
Ly, we observe that H(p||q) shares a nature similar to KLgyy, in Equation (59), while a
difference is that the modelling part LY + L is provided with a port p(x) to accommodate
samples such that task A can be performed via maximising H(p||q) without a need of
separately estimating 6,, by the ML learning.

For q(x|0) = G(x|c, ¥£), we implement the maximisation of H(p||q) to estimate 6,, by
directly adopting the semi-supervised BYY harmony learning for Gaussian mixture given
in (Xu 2015), i.e. its algorithm 9, by which the performances of task A, task B, and task C
are coordinated. Moreover, H(p||q) can be extended into its matrix-variate counterpart.
Particularly, algorithm 9 in (Xu 2015) can be extended into the algorithm 1 given below
for learning o, N (X|C(’f), Qr, Ef))

Algorithm 1 Semi-supervised learning MND mixture

Require: Initialise p,; = 1/k.
Repeat the following two steps until converged:
Ying-Step: for v = 0,1, we get
Ny = Zi\[:ﬂ?w,t, Oy = NOAJ[:}VN

Cr = Tty Poiks
w N, )

$% _ Tib1 PorX—CHX=CT
w

’

N
QF — TP X—CHTEL X, —CY)
w N, ‘
Yang-Step:fort =1,--- ,Nand w = 0,1, we get

') 1
e NI, 08, 52)) ot T
[vé
Yoo [N XICh 28, E5)]
Poit = (77 +1+ V%,@)Pw\xw

where §;; is the Kronecker delta.

Polx, = w?“*’“’”l/” ’

Remarks:
(a) There are N samples in total, with each sample X; associated with a label w} as

follows:
0, for a sample from the control,

w; = § 1, for a sample from the case,

#, for a sample with label missing.
(b) The bigger the y > 0 is, the stronger the supervision role of the label @} will be. We

may let ¥ > O to start at a high value and gradually decrease towards a pre-specified value
by a simulated annealing procedure.

(c) n is controlled as described in Sect.2.3 of (Xu, 2015). A simple way is letting 7, to start
from a small value and gradually increase to a large value.
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During implementation of the above algorithm, not only task A is performed but also
task C can be simply handled in the Yang step by checking whether p1|x, > po|x, to classify
each sample into the case or control. Also, task B can be made after learning by putting
the resulted parameters into sg; = KL or sx; = KLsum to get the corresponding p value.

Last but not least, considering semi-supervised learning, we also propose an improved
procedure in Table 5 for training, testing, and validating on a small size of samples.

Integrating p values, inferring rejection domain, and S-space boundary-based tests

Each IHT type in Table 3 involves more than one measure, which incurs for the problem
about how different measures are jointly evaluated. Though 2D or 3D plots provide a pos-
sible joint evaluation, how to appropriately scale each measure is still a challenging issue.
In general, we need to integrate multiple measures into a scalar index based on which
the joint performance can be evaluated, which relates closely to efforts made on comb-
ing multiple classifiers (Xu and Amari 2008; Xu et al. 1992b) and evidence combination
(Barnett 2008).

For an IHT task, the final scalar index is typically the p value. When multiple measures
are all in the p values, what we encounter becomes the task of p value combination, e.g.
by the Fisher combination (Fisher 1948).

In Table 3, ep and ep are already given in p values. But ¢4 is usually measured by a
square error or negative log-likelihood, and ¢c is measured by a misclassification rate.
Alternatively, ec may be given in a p value via the statistics in Equation (47). Let s = —¢&4
or generally s = —¢ for a monotonic measure ¢ > 0 that prefers values close to zero, we
may get the corresponding p value with help of the permutation method.

However, p value combination has a weak point. Each p value is merely a positive num-
ber that indicates the false alarm probability, losing certain useful information already.
Under the term meta-analysis (Evangelou and Ioannidis 2013), efforts have been made by
transforming p values into multiple Z statistics such that the missing information is added
in without or with help of information directly from data (Zaykin 2011).

Actually, the Hotelling 72 statistics by Equation (24) and getting a statistics by
Equation (21) may also be regarded as examples that get an integrated statistics s;. Gen-
erally, a multivariate hypothesis test may also be regarded as an integration of multiple
univariate hypothesis tests.

Table 5 Semi-supervised testing and validating

Issues Description

Issue-1 Estimate the parameters by semi-supervised learning on the training set, from which we
get the corresponding p-value p and a classifier. Using this classifier on the training set
and the testing set, it follows from Equation (44) that we get 8&’ and efCE. This is what we
traditionally get.

Issue-2 Lump the training samples and testing samples together, and estimate the parameters by

semi-supervised learning on the lumped set, we also get the corresponding p, EIC’ and éfg’

Issue-3 pis actually more reliable than p because testing samples are used for regularising param-
eter estimation. This p is also different from the traditional compounded p-value because
the label information of testing samples have not been compounded.

Issue-4 Without using the label information of testing samples, 5&3 shares the concept same as

&ff, but s actually more reliable because of regularization.

Issue-5 Merging the training set and testing set to get a big training set and treating the validating
set as a new testing set, which actually extends this procedure to improve the validation.
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Typically, an integrated statistics sy = g(s, ¥) > 0 comes from s =[sD,...,sD] such
that 5520 monotonically increases as the situation differs far from Hy, where each s®
comes from one univariate hypothesis test (e.g. s = ¢; — c; in the Hotelling T statistics)
with a set W of parameters shaping the integration (e.g. the covariance ¥ in the Hotelling
T? statistics). The set W is specified without or with help of information obtained directly
from input data. A critical value 57 is computed from the original pair of the sample set
Xo, X1. Then, the false alarm probability p(sy > 5¢|Hp) is obtained as the p value, where
and hereafter p(-|Hp) denotes under the condition that Hy is satisfied.

However, choices for such a sy = g(s, ¥) are very limited in the existing studies, mostly
in a quadratic form such as Hotelling statistics, Rao’s score by Equation (8), and the Wald
test by Equation (7). This is equivalent to approximately regarding sV, - - - , s from a
multivariate Gaussian distribution, while other distributions are seldom studied yet.

Instead of seeking an integrated statistics sy, we directly seek the domain I'(8) of
rejecting Hy in the space of s based on a critical vector 5 as follows:

F(E) with §X1||o = nf(XOHXl)’ (63)

where 8x, , = 1,s(Xo||X1) means that § is inferred from the given sample set Xo, X1 by an
inferring method 7,,¢, and the subscript X7)jo is used as the abbreviation of X1|| Xy, which
will be used whenever its omission will not cause confusion.

Then, test is made by checking the probability that s falls in I'(5) under Hy, that is:

P (s el (§) |H0) =p (s el (EXIHO) |Ho). (64)

We estimate the p value by a permutation test. That is, we get a new pair of sample sets
X7, X7 from Xo, X1 by a permutation 7 that shuffles each label w of x;,, and then we
obtain:

p(s e (3)|Ho) = i1+z (sx, €T ( ))}

mell

1, uis true,
O S (65)
0, otherwise,

where #S denotes the cardinality of a set S, the subscript X1|0 is used as the abbreviation of
XZ |XT, and IT consists of a large enough set of permutations made by either enumeration
or random shuffling, including that 7 = empty denotes the sample pair Xp, X;.

Recalling the classic studies of getting an integrated statistics sy, we observe that 5y =
g(s, V) actually define a closed shell or boundary that divides the space of multivariate
statistics s (shortly S-space) into two parts, with its inside as the acceptance domain and
its outside as the rejection domain I'(5). For example, the acceptance domain obtained
by both the Hotelling statistics and Rao’s score by Equation (8) is a hyper-elliptic volume.
We may further extend a hyper-elliptic volume to a bounded volume in another shape.
Actually, a bounded acceptance domain corresponds a probabilistic modelling by a single-
mode distribution. Thus, the corresponding tests are called S-space model-based tests.

On the other hand, we have also a S-space boundary based test (BBT) as summarised
in Table 6. It should not be confused with the BBTs in the space of input data (shortly D-
space), as those previously addressed in Tables 2 and 3, as well as in Figure 3. Those are
two-sample tests with the boundary for separating two populations in the D-space while
the S-space BBTs may correspond to any tests in the D-space.



Xu Applied Informatics (2015) 2:4 Page 25 of 39

Table 6 S-space boundary based test (BBT)
Step Description

(1) infer § = /¢ (Xo|X1) in the multidimensional space of statistics s, where 8x, , = s (Xo|[X1)
means that s is inferred from the given sample set Xo, X7 by an inferring method /,,¢, and
the subscript X1)j0 is used as the abbreviation of X; ||Xo, which will be used whenever its
omission will not cause confusion.

(2) use s to design an unbounded boundary that divides the space of statistics s into two
separated and unbounded half-spaces.

(3) let the one that does not contain the origin 0 as the rejection domain I'(s), with the
corresponding boundary side named as the R-side. The other one is the acceptance
domain.

4) tend to reject Hp as s deviates from the R-side of boundary with a nonzero distance. The

larger the distance is, the more seriously Hop breaks.

Also, integration can be made by considering the complementarity of S-space BBTs and
S-space model-based tests, via combining I'(s) and the acceptance domains, obtained
from not only the above complementary aspects, but also different sources, e.g. a
bottom-up source from univariate tests on input data and a top-down source inversely
transformed from the p values via a meta-analysis (Evangelou and loannidis 2013). Also,
based on the resulted I' (5), an easy computing expression sy = g(s, I'(§)) may be obtained
to get an asymptotic distribution p(s¢|I"(s)) for a fast estimation of the p value, see
examples given after Equation (70).

S-space BBT for the multivariate zero mean

Testing Hyp by Equation (1) for the case-control studies can be formulated into testing
whether a multivariate statistics s = [s(l), e, s(d)] takes a point far away from the origin
of the multidimensional space. One example is a two-sample test that examines the
following null:

Ho:S:Cl—Clzo, (66)

by the Hotelling 72 statistics. The second example is the Wald testing statistics by
Equation (7), and another example will be given in the next subsection.

In the existing studies, such a test is typically made via either the X;? statistics or
Hotelling’s T? statistics. Also, Rao’s score by Equation (8) is such a type of statistics.
As addressed in the previous subsection, they are all featured by an integrated statistics
s > 0 that monotonically increases as s deviates away from the origin and belong to the
S-space model-based tests. Also, all these tests may be regarded as extensions of one typ-
ical univariate two-tail test (e.g. by > test), that is, a univariate statistics s deviates away
from the origin s = 0 via the value |s].

The counterpart of a univariate two-tail test is a univariate one-tail test that examines
how far s deviates from (—o00, 0], i.e. testing the statement s < 0. When either rejecting
s < 0 or rejecting s > 0 happens, we reject Hp : s = 0. Even when the statement s < 0 is
not rejected, there are still chances that Hy : s = 0 will be rejected.

Typical studies of univariate one-tail tests include the one-tailed ¢-test and one-tailed
z-test. However, we are not clear what are their counterparts in multivariate tests. As
addressed above, Hotelling’s T? test can be regarded as a multivariate counterpart of a
two-tailed test.
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The S-space BBT given in Table 6 actually provides a road to extend univariate one-
tail tests to multivariate ones. Observing univariate one-tail tests from the perspective of
S-space BBT, we see that s = I,,¢(Xo||X1) is actually a boundary point that results in:

I'(s) = {s: (s — 5)sign(s) > 0} (67)
_B oo): lff >0 with Sign[u] = Sy
(—00,3], if s < 0. ||
Given 5 and thus I' (5), any s obtained from the case-control samples under Hy may cause a
false alarm if s falls in I"(5), which happens in a probability p(s € T'(5)|Hp), i.e. the p value
by the inference 5. If it is small enough, the statement s ¢ I'(s) will be rejected, which
implies that s = 0 or Hy by Equation (1) is rejected.

We further consider a statistics s in the multidimensional space from the perspec-
tive of S-space BBT given in Table 6 (2). We start by observing an orthant of the R?
space featured by sign(s) = [sign (5(1)) ,. .., sign (E(d))]T and consider one separating
boundary, as illustrated in Figure 5A. Such a boundary is equivalent to the following
decomposition:

rG=réW)x.--xT (§<d>),
p(s € T@IH) = [p (s e T (3) 1Ho), (68)

where each I'(3") is given by Equation (67) for computing p (s(i) el (E(i)) |Ho). This
actually provides an example that extends a one-tail univariate hypothesis test to a
vector-variate one.

In implementation, it is not easy to get the factorization of p(s € TI'(5)|Hp) by
Equation (68). Instead, we approximately consider to remove the second-order depen-
dence by the following decorrelation:

T hoi
s, = { Us, Choice (@), Ty =1, (69)

A% UTs, Choice (b),

where A, is a diagonal matrix consisting of the nonzero eigenvalues of the following

covariance matrix:

T
Znel‘l (sXﬁO - 'Uvn> (sXﬁO - M”)
B #11
Z]‘[El—[ $XTo
#I1

P2

’

n' =
and U is a d x m matrix with its columns consisting of the eigenvectors of ¥, such that
Ay =UTS,U.

Another issue is that only those major components in Equation (68) are useful while
some components are not only useless but also disturbing, especially when we consider
a limited size of samples. To do so, one may consider that the columns of the matrix U
consist of the eigenvectors of X corresponding to the m-largest diagonal elements of A,,.
Such an implementation of Equation (69) is typically called principal component analysis
(PCA). How to decide an appropriate number of components is a model selection task



Xu Applied Informatics (2015) 2:4 Page 27 of 39

A
X
o I'(s)
(a) 3
=
@ y 44¢¢¢

Figure 5 Rejection domain I'(5), e.g. point x in the rejection domain, and y in the acceptance domain. (A)
One separating boundary that consists of d lines with each emitting from § to infinity in parallel to one axis of
the orthant. (B) Choice (c) defines a hyperplane that passes s and uses its vector direction as the normal
direction. While choice (b) takes the normal direction by the primary diagonal direction of the orthant.

(Tu and Xu 2011, 2012; Xu 2011). Moreover, one novel direction for this task will
be addressed later in thip paper between Equation (91) and Equation (99). Actually,
Equation (69) only applies to remove the second-order dependence. One may further
consider non-Gaussian factor analysis (NFA) and binary factor analysis (BFA) to remove
dependencies among non-Gaussian components (Tu and Xu (2014); Xu (2003, 2009) and
also Section 5 in Xu (2012b)).

Simply, we use the notation s = 1,,/(Xo||X1) to denote a procedure to obtain such major
components and then use this s to get a separating boundary and its corresponding I'(s).

Ilustrated in Figure 5 are three examples as follows:
s: (s(i) — E(i)) sign (E(i)) > 0, Vi} , (a),
r@=1{ |s:(s—3"sign® > 0}, ®), (70)
s:(s—E)T§>O}, (c).
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Choice (a) is illustrated in Figure 5A same as the one in Equation (68) with each I' %)
given by Equation (67). As illustrated in Figure 5B, each of two other choices is a half space
bounded by a plane and on the side away from the origin. Choice (b) is more suitable
to the case after using Equation (69) in choice (b). Except for the degenerated cases that
the normal direction of the hyperplane becomes in parallel to one of the coordinate axis,
choice (b) and choice (c) will approximately describe a certain dependence across the
components of s.

After using Equation (69) to make the statistics s become an m-dimensional vector with
the second-order dependence removed, we may observe that the scope of I'(s) becomes
narrowed as m reduces. When m = 1, the scope of I'(s) is narrowed to a one-tail test
along the axis of only one component.

In implementation, we obtain p(s € I'(s)|Hp) by Equation (64) via the permutation
by Equation (65). Also, choice (b) and choice (c) may be understood from getting an
integrated statistics as follows:

T
Sw=w's, 71)
w = sign(s) or w = 5.
Approximately, s,, comes from a normal distribution with the mean u., and the variance

S, based on which we can make a one univariate test.

SPD test and SPD discriminative analysis

Proposed in (Xu 2013a), the SPD method firstly examines the delta §(x, y) by pairing every
case sample x € X; and every control sample y € X and then summarises such deltas as
follows:

1
D(X1||Xo) = >N s@y. (72)

#Xo#Xl xeXy yeXo

Generally, §(x,y) could be either symmetric or antisymmetric. One simple symmetric

example is:
(x—y)?
By = —a 2,
o107 + 0o, (73)
(c1 — co)? r
D(Xuj) = 1+ =

- ’
alalz + aoaoz alolz + oz()(ro2

where ¢, oaz), a, is the sample mean, variance, and proportion of the samples in X,
respectively, and ry,; is the mutual correlation between x and y.
The above example can be extended to the case that both «, y are vectors with:

506y) = (x =y [aoTo + 1 Z1] 7 (x — y).
Also, we may consider an antisymmetric delta:

3(x,y) = px — ), dp(u)/du > 0, (74)

where p(u) is a monotonic function. One simplest example is p («) = u as follows:

3(x,y) =x—, (75)
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which is equivalent to testing the difference of two sample means. To find the collective
inclining structure, we classify §(x, ) into three groups by x > y,x = y,x < y and get the
following decomposition:

D(X1j10) = Dy (X1))0) — D—(X1)10)5 (76)
Dy (Xy0) = Y & —9),
x>y
D_(Xyjo) = Y_(y — %)
y<x

with D (Xyj0) < 0 indicating that there is a collective inclining dominance (i.e. the repre-
sentations of cases are bigger than the ones of controls), D(X1jj0) < 0indicating a reversed
dominance, and D (X1)j0) = 0 indicating no dominance.

Recalling Equation (66), it follows from § = D(X1jj0) = ¢1 — ¢o that D(Xy0) is approx-
imated from a normal distribution. Thus, the above collective inclining dominance can
be tested by the one-tailed ¢-test and one-tailed z-test addressed in the previous subsec-
tions. We may get the mean u ( iTIIO) and the variance o2 (Xﬁm) from {D(XfHO, e 1'[}
and then approximately compute the p value by a univariate one-tail z-test.

When x,y are vectors, we consider:

T
s = [D(“(Xu|o),--~ ,D(d)(Xluo)] ; (77)

with each D (X1jj0) by Equation (76). The task is detecting whether there is a collec-
tive inclining dominance, i.e. whether s deviates far away from the origin such that Hy by
Equation (1) breaks. The task can be handled by the S-space BBT in Table 6 as a multivari-
ate extension of a one-tail univariate hypothesis test, following the method introduced
from Equations (68) to (71) given previously.

Also, we may consider this multivariate SPD study from a perspective similar to the
FDA by Equation (11). When «, y are the d-dimensional vectors, we extend Equation (74)
into:

s(xy) = px—y)Tw, (78)

where p(u) = [,O(M(l), e, ,O(u(d)] g and p (u) is the same as the one in Equation (74). That
is, the difference x—y is projected onto a most reasonable direction w. In the simplest case
p(u) = u, we get §(x,y) = (x — y)T'w given in Equation (72) and thus leads to s, = w’s

in Equation (71) as follows:

1
" = P Z Z (x— y)Tw =w's. (79)

xeXq yeXo

Without losing generality, we consider that the components of s are mutually indepen-
dent, e.g. obtaining a second-order independence by Equation (69). Then, we seek how to
choose an appropriate w.

Under Hy, we expect that s, = D, (XiTIIO) ,m € II varies around its mean that is
typically zero according to Equation (75), that is, we expect that the following standard
deviation of sJ, is minimised:

oz (W) = vVwIiZ, w, (30)
Y, =E [(sfv — Es}y) (s, — Es”)T] .

T
W W
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Also, we expect that sy, best preserves discriminative information underlying X, Xy, for
which we maximise [sy|. We apply a bootstrapping method to enhance the reliability by
maximising:

pyw) =3 W', y >0, (8D)

we

which may tend to oo if it is unbounded. To avoid it, some bound will be imposed on w.
For y = 1, we usually consider:

max p,—1(W), s.t. wd ¢ [a(i), b(i)] ,Vi. (82)
w

by which the solution of w =[w), . . ., w@]T is reached at one vertex, i.e. w'? takes either
a® or b9, Particularly, when € consists of only one pair X1, Xo, the above maximisation
leads to choice (b) in Equation (70) if we let —a® = b® = 1 and to choice (c) if we let
—a® = p) — |D(i)(X1||0)|-

For y = 2, we consider:

max_  py—(W) = wlxtw, (83)
w, s.t. |w|]2=1,

with its solution given by the eigenvector that corresponds to the largest eigenvalue of
P =3 cqs?s? T

Integrating Equations (80) and (81), we consider to maximise p, (w) with o (w)
minimised simultaneously or subject to a constraint o, (w) < constant.

Alternatively, we may consider:

Py (W)
oy (w)’

max Jw), J(w) = (84)

which shares a spirit similar to the FDA by Equation (11). At the typical case y = 2, it

becomes
Ty¢
w' X%w
maX](W), ](W) = Til (85)
w wiAw
with its solution given by the eigenvector that corresponds to the largest eigenvalue of
2;0.5 E¢ 2;0.5‘

Furthermore, we proceed to consider that each D (X1jj0) in Equation (79) is not a
simple difference by Equation (76) but the following 1 x 2 row vector:

DO (Xuj0) = [DY (Xayp0), ~DY Xy | (86)

Also, we may extend x —y with each element ¥ — y() becoming a row vector [x(i), —y(i)].
Accordingly, we get:

X—y=Axyv,
S(X; y) = WTAx—yvr (87)

where v = [y, V(2)]T and A,y isa d x 2 matrix with the i-th row being [x®, —y®]. It
follows from Equation (72) that the above Equation (87) leads D®) (X1jj0) to:
DO = [~ ],
s = Dy (X1j0)V, (88)
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where Dy(X1)j0) is a d x 2 matrix with DO (X1jj0) as its i-th column. Accordingly, the
inner product by Equation (79) becomes:

Sw = WTDM (X1 ‘ |0)V. (89)

Given v as fixed, the study from Equations (79) and (84) applies directly for us to get w.
Given w as fixed, w/ Dy (XiTIIO) = D! (X1)10) becomes a two-dimensional row vec-

tor and, it follows from Equation (89) that we have s, = vTDCT (X1||0) in the same form
as Equation (79). With v in the place of w and D, (X1||0) in the place of s, similarly, the
study from Equations (79) and (84) applies directly for us to get v. Generally, we iteratively
update v with a fixed w and update w with a fixed v, for a number of circles getting con-
verged. Still, whether such an alternative iterating procedure can converge is an open issue
that demands further investigation.

The p values and testing complexity control

Recalling Equation (64) and Table 6, based on a given sample pair X7jjo = Xol| X1, we get a
statistics vector §X1H0 = Iy (Xo||X1) and a rejection domain I' = T’ (ngo) by the inferring
method ;. Then, we compute the following false alarm probability:

Pxy =P € Ul Ly, X1)10, Ho) (90)

as the p value. This concept is the same as the one used in the conventional literature
where X1 0 and I,;s are usually implied but not spelled out.

Being different from those studies considering a univariate statistics, the p value by
a multidimensional statistics vector s highly depends on the dimension m of this vec-
tor or the complexity of the testing space. Given a limited sample size, the p value by
Equation (90) will reduce as the value of m increases, causing a phenomenon similar to the
overfitting problem in the studies of machine learning and statistical modelling. In other
words, we encounter a ‘dimension curse’ in hypothesis testing too. Therefore, we need to
appropriately control the complexity of testing space, i.e. selecting one appropriate m.

Given a criterion J(m), the problem of selecting a best subset is a typical problem of
feature selection. Generally, it involves an exhaustive evaluation of all the combinations
of m features (i.e. m components of s) and all the possible values of m, which is a NP
hard problem. Usually, the branch and bound policy (Narendra and Fukunaga 1977;
Somol et al. 2004) and the best first strategy are used to save computing cost (Xu et al.
1988). In this paper, we only consider one simple selection strategy that evaluates the
components of s incrementally one by one.

To facilitate it, we perform Equation (69) to make the components of s become decor-
related and start to pick one component that corresponds to the smallest value of a given
criterion J(m). Then, we successively add in one component such that J(m) gets a big-
ger drop further and so on and so forth until no further reduction is caused. Finally, the
selected components form the resulted feature set with a size m*.

For this purpose, using the p value by Equation (90) as J (1) does not work well because
of its tendency of reducing as m increases, resulting in one m* that is usually much bigger
than the appropriate one. Instead, we consider another false alarm probability as follows:

p(s € T| Lz, Ho) = / P (X510) 2 (5 € TV 1, X5 0, Ho ) dXT o (91)
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which is obtained on all the possible sets of Xﬁlo that come under Hj instead of merely on
a given pair Xy jo.

Though this probability is useless to judge whether Xj||o contains enough information
to reject Hy, it reflects how the complexity of testing space affects a background portion
of the false alarm probability. Actually, it reflects an inverse of the effective volume of
the support that the statistics s locates. As m increases, the volume increases exponen-
tially, and thus, p(s € I'| I,;r, Hp) will reduce negative-exponentially. Such an exponentially
decreasing tendency is also contained in p(s € I'| I, X1)j0, Ho) for the same reason, which
affects the accuracy of the estimated p value.

To reduce this background disturbance, we consider Equations (90) and (91) jointly by
the following a posteriori version of the p value:

Toer <puy? (XF10) 2 (5 € TV 1y X0 Ho ) X3

110
P(S € Fl In :HO)

Xy = P(—Hol Ly, X1)j0, Ho) = )
where and hereafter —Hy denotes rejecting Hyp. The denominator aims at cancelling out
the disturbing portion in the numerator, such that ppx,, provides not only a better esti-
mation of false alarm probability of rejecting Hy but also a better criterion J(m) for
selecting a best subset of the components of s and thus inferring one appropriate m™*.

Instead of directly handling the above integral, we get a large set IT of sample pairs
XT, X7, with each pair X7, X7 resulted from a permutation of Xy and X7. Using every pair
XT,X§ toinfer I,;r (Xg ||Xf) = Sx=_, we get a set of p values as follows:

10

Py = {pxﬁo,n e n}, with pxr = p (s €T\, ,XﬁIO,HO) (92)

110

based on which we compute:

Zﬂeﬂr Pxﬁo

pbxy0 =
o Zne]‘[ pXﬁO

_ (4]
- prIHOrleHO’

0 _ nr _ Mur
PPxy 0 = E’ PXyp = 7’

nr = #Ir, ng = #11, (93)

[ = {n :plerlo gpxno,‘v’n S l'[},

2 reny Px3, Znenprlo

Ur = y = .
nr nmn

We observe that the pp value has two factors. One is ppg(lllo that describes the propor-
tion of the pairs of X, X7 with the corresponding Px3, < PXip) that is, on each of these
pairs we should also reject Hy if we reject Hp on Xj)j0. In other words, ppg’(mo reflects
the information of relative difference contained in Pp. The other factor PXy ) 18 the ratio
of the average false alarm probability per pair over the disturbing background per pair,
reflecting the strength of discriminative information contained in Ppy.

In implementation, we may use py,, to make an initial screening. When rpx, , > 1,
inference is nonsense and no further computing should be made. Generally, px, , will be
much smaller than 1, and thus, ppx;, will be much smaller, while Pl’?q“o provides a worst
case upper bound of ppx; -
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We should observe ppx; ppg(mo, and rpx;, at not only one same value of m but also
an appropriate m*. In addition to using ppx, , by Equation (93) as J(m) for making an
incremental selection, we may also consider ppﬁ’(mo or rpxy,, as J(m), resulting in m; or
m;‘p. Also, it follows from some mathematical derivation that we have m* > m}, > m
with 71} being a most conservative lower bound. We will be more confident when all these
values are identical or not different too much. Moreover, further insights can be obtained
from the following considerations.

On one side, we desire that the exponentially decreasing tendency contained in p(s €
['| Ly, X1jj0, Ho) is removed via the normalisation by p(s € I'| L5, Ho) such that ppx,
in Equation (93) will no longer have such a decreasing tendency. With pxy, = p(s €
I, ,Xf”O,HO) in Equation (92) replaced by ppx, ppg(mo, and rpyx,,, we may turn Py
into its counterparts Py, Pypo, and Py,. We compute not only the varying curve for each
of ppx; 0, pp}luo, and rpy, , as m increases, but also the varying curve of the mean of the
elements in each of Py, Pypo, and Py, as m increases. Then, we compare each curve with
its corresponding mean curve and desire that the mean curve is as flat as possible or at
least flat around m*.

On the other side, desiring a flat mean curve is not a sole principle. W also desire that
the discriminative information should be kept in each of ppx,,, ppg(mo, and rpx, , as
much as possible. Observing the factorization ppx,, = ppg’(luorpxmo in Equation (93),
the strength of discriminative information is contained in rpx, , with an exponentially
decreasing tendency that is supposed to be mutually cancelled out by the denominator
and the numerator but perhaps not completely, while the discriminative information of
relative difference is contained in ppg(mo and kept unchanged as long as every inequality

between px;, and px; , remains unchanged.

Bi-test, twin p values, and P-space BBT
Putting the above two sides together, we observe that a S-space multivariate test is actually
a bi-test that tests Hy together with the following hypothesis:

Iy : the inference is not reliable. (94)

We examine a decision that both Hy and Iy are rejected, featured with two p values.

As addressed after Equation (91), the multivariate statistics s inferred by ¢ suffers a
systematic bias that will make /,; unreliable. This unreliability varies with the dimen-
sion m that takes an important role in /,7. Though corrected by the denominator in
Equation (93), there are still some residuals that will not be completely cancelled out, the
effect of which still varies with m and reduces the reliability of /,,r. The test Iy is formulated
for this reliability via controlling an appropriate m* and a level of false alarm probability
of rejecting Iy.

One should notice the difference between testing Hy and testing /. Testing Hy examines
only the input, while testing Iy examines both the input and the performance of testing
Hp. The inference I, gets Xjjo as the input and the outcomes px, ,, pPx 0 pp&lllo, and
Xy - Using ox;, to denote anyone of these indices, regarding I, as reliable on Xjjo
actually implies that it should also be regarded as reliable on any pair X7, X7 with the

corresponding oy

To being smaller than oy, ,. Thus, the false alarm probability of rejecting

Iy is computed by p (oxﬂw < 0X1\\0|—-H0,H0).
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Interestingly, some mathematical derivation shows that letting ox, , to be anyone of
PXy00 PPXyj00 pp‘)’(mo, and rpy,, will always result in the same false alarm probability as
follows:

10 —

p(=lol=Ho, Ho) = p (pxg, < PxyolHo) = pP%, o (95)

where and hereafter —Iy denotes rejecting Iy. Reflecting the discriminative information
of relative difference, this p value of rejecting Iy will be not affected as long as the
exponentially decreasing tendency will not change every inequality between px3, and
PXipo-

As summarised in Table 7, a multivariate test is actually a bi-test that tests not only
the classic null but also a null about the ‘dimension curse’ The rejection of Hy is con-
trolled by a given level «. If pPxy = @ Ho will not be rejected, and thus, there is no
need to test Jy. Accordingly, Equation (93) for the p value of rejecting Iy is also modi-
fied in Table 7. The bi-test is implemented with or without using stochastic simulation.
Table 7 (2) outlines those previously addressed points for implementation via stochastic
simulation, while Table 7 (3) outlines an alternative implementation that does not need
stochastic simulation.

This alternative comes from considering I' in the choice (a) of Equation (70) by which
we have:

p(S € Flln ¢XiT||0:HO) = l—[ DPi l—[ am;

i<m* i>m*

Table 7 Multivariate Bi-test and Implementations

Type Description

Test bi-hypotheses and twin p-values

test Ho whether the case-control populations are different, by an inference /¢ in the space
of multivariate statistics s based on samples from the two populations. Hp is rejected
if ppxy, < @, where the false alarm probability ppy,, = ppimorpxmo is given by

Equation (93) and « is a prespecified level.

test lp whether the dimension m of s is appropriate such that /¢ is reliable, with the p-value given
by

p(=lol=Ho, Ho) = p(ppxr < alppx,, < o, Ho),

o —
which is not smaller than ppﬁwo that reflects the relative discriminative information among
PPxy o While ignoring oy, , that reflects the strength of discriminative information.

Bi-text Implementations

Stochastic way

(a) Make the components of s decorrelated by Equation (69).

(b) Getp(s € T'| /nf,XfHO, Ho) = p(s € T'(8)|Ho) by Equation (68) with I"(s) taking one of
three choices in Equation (70), and then getting Pry by Equation (92).

(c) Get ppxwo,pp%”o, 1Pxy, 0 by Equation (93) and then getting p(—lo|—=Ho, Ho) as above.

(d) Using ppg’(wo or p(—lo|—Ho, Ho) as J(m) to infer an appropriate m} and select the m}
best components of s.

Nonstochastic

way a) Make the components of s decorrelated by Equation (69).

(

(b) Get {p;} with each p-value p; obatined by an univariate test.

(c) Get pp?wo by Equation (99) and P10 by Equation (97) with Pxip = [T, pi, as well as
getting p(—lo|—Ho, Ho) as above.

(d) The same as the above (2)(d).
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pi=p(s?er (57) 1Ho), (96)
where the extra components of s will contribute a constant factor [, - &; that will be
cancelled out via the denominator and the numerator in Equation (93).

In such a case, we may get PX10 = Ur/K without stochastic simulation. First, we
have u = []; n®. Each 39 under Hy is a random variable with a zero mean, and its
corresponding false alarm probability p; is uniformly distributed over [0, 0.5]. Thus, we
get u = 1/4. Second, we also get ur < PXupo by letting p(s € I'| I, ,X’fHO,Ho) < Pxio
for each 7 € Ilr to be approximated by its upper bound py;, ,. Putting the two together,

we have:

VPXmO =—2= 1 (97)

UL PXipo _ %m, one tail,
7 w ' om» two tails.

Next, ppg(wo is also considered without stochastic simulation. From Equation (95), we

2
have p (—lo|=Ho, Ho) = pp%,, = p([1;p7 <TlipilHo) = p (l_[i (7)< Hip?IHo),
which leads us to the well-known Fisher combination (Fisher 1948) that makes a test on
the false alarm probabilities {p;} by the following combination:

pr=p (]_[ w7)? < Up? |Ho>

i

=p (xzzm > —ZZlnpi) s Xy = —ZZlnpi”.
i i

This link provides new insights from two perspectives. On one perspective, we may adopt

(98)

the Fisher combination approach to estimate ppg(mo as follows:

PPXy0 =P (xgm > —2zlnpi> : (99)

l
Together with Equation (97), we get ppx,, = ppg(morpxmo for testing both Hyp and I
without stochastic simulation via permutation.

On the other perspective, we observe that the traditional p value pr of the Fisher
combination is actually the false alarm probability by Equation (95), only reflecting the
discriminative information of relative difference between [[, p7 and [, p; but ignoring
the strength of discriminative information contained in [, p;. In other words, the Fisher
combination just provides a half story for combining {p;}, and we can use the formula-
tion ppx,, = pp}’(morpxmo to complete the whole story, using ppg(mo by Equation (99) and
Pxy0 by Equation (97) with px, , = [, pi-

The last but not least, one should notice that the p value of testing Hy measures the
chances in the S-space (i.e. the space of multivariate statistics), and the p value of testing
Ip measures an event in the P-space (i.e. the space of false alarm probabilities). In other

words, testing Hy involves a S-space BBT while testing Iy involves a P-space BBT.

Discussions

Gene expression analyses

Gene expression analyses take important roles in bioinformatics and computational
genetics. Expression profiles are featured by data matrix with its row indicating expres-
sions of different samples ¢ = 1,---,N while its column consisting of expressions
i=1,---,m from different genes, miRNAs, and IncRNAs.
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In recent years, developments of data acquisition techniques lead us to consider expres-
sion profiles in a cubic or even a high-dimension array. As illustrated in Figure 1, one
additional dimension j = 1,---,d is added for examining expressions under different
conditions (Ji et al. 2009; Persson et al. 2011) and across different time points (Bar-
Joseph et al. 2012). For examples, current cancer studies consider each basic unit (i.e. a
gene, a miRNA, a IncRNA ) in paired expressions of normal and tumour tissue from the
same individual, that is, each individual is featured at least by a 2 x d matrix X;. Gener-
ally, each example X; is a m x d matrix. In Table 7, we suggest a list of topics for such
matrix-variate-based applications.

Typically, the number d of rows (i.e. gene, miRNA, and IncIRNA) is huge, while the
sample size # is small. It is difficult and also unreliable to consider the entire m x d matrix
as a sample X;. Instead, we pick k- tuple out of m rows to form a m x k matrix as a sample
X;. Without losing generality, we focus on that each sample X; is a 2 x k matrix from
paired expressions of normal tissue and tumour tissue.

In the existing studies, there are two types of efforts for dealing with such format of
samples. The first one reduces each sample X; = [xf‘i’j)] ,i=1,2j=1,--- ,kintoal x k

matrix x; = [xgl), e ,xik)] for multivariate hypothesis test. A typical reduction is given

by:
o

D _ n x> (100)

=lnx
The second type of efforts is a paired difference test, e.g. a paired ¢-test when k = 1 and
paired Hotelling’s square test when k > 2. In Table 8, comparative empirical IHT studies
are suggested on the samples of X; in a 2 x k matrix versus ina 1 x k vector.

Exome sequencing analyses

The case-control study is also a major problem in a genome-wide association study
(GWAS) or exome-sequencing analysis (DePristo et al. 2011; Purcell et al. 2007).
Typically, a digit score (i.e. 0, 1, 2) is assigned to a Single Nucleotide Polymorphism (SNP)
allele per site and per individual. In such a representation, each sample is univariate when
each site is considered one by one. One variate two-sample test takes a fundamental role
for detecting a single SNP in the GWAS, e.g. the PLINK provides one widely used tool
box (Purcell et al. 2007).

Moreover, each sample can be a vector when multiple sites are considered jointly.
Recently, there have been ever-increasing efforts on finding multiple SNVs jointly
(DePristo et al. 2011; Derkach et al. 2013; Evangelou and loannidis 2013; Lin et al. 2014;
Liu et al. 2014; Pan et al. 2014). Also, we may test whether there is a collective inclining
dominance of the representations of case samples over the ones of control samples, or
vice versa, with help of the method proposed from Equations (79) and (84), as well as the
extension introduced around Equations (87) and (89).

Alternatively, we may also consider a SNP allele per site and per individual with §(x, y)
in Equation (75) replaced by one 3 x 3 matrix A(x,y) = [Sil_l)y] with:

sign(x —y), i =%,y =,

5 _
=y 0, otherwise.

(101)
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Table 8 Several IHT Applications

IHT types Applications
Model based and
Mix-modelled (a) Starting at the case that X; is degenerated into an 1 x 2 matrix, we conduct the

Hotelling test by Equation (2) and its extension KL, in Equation (31), in comparison with
both univariate t-test and a paired t-test.

(b) For the general case with k > 2, we conduct a matrix-variate test by Equation (28),
as well as by the matrix-variate counterparts of KLy o, KLsym, and KLsyms, in comparison
with not only the Hotelling's T-square test on the k dimensional vector x; obtained from
Equation (100) but also the paired Hotelling's T-square test on 2 x k matrix-variate samples
of X;.

(c) Considering each sample X; in a 2 x k matrix, we investigate the bi-linear discriminant
analysis by Equations 18, 33, and 34, in comparison with the classic FDA by Equation (11)
on the k dimensional vector x; obtained from Equation (100).

(d) Investigate the generalised bi-linear discriminant analysis by Equations 40, 41, and
34. For simplicity, we get v;,i = 1,- - ,d by Equation (43) and then solve w by Equation
(34). When k becomes too big, we further regularise the learning of v; by minimising J, =

2
Dtodoy +a Uwy

2 ;
=3y +>0 Zf:l |u,(’)|q, with g = 2 for Tikhonov, g = 1 for sparse learning.

Boundary  based

and Mix-modelled (a) Consider a logistic regression by Equation (3) with w in one of the ways given in

Table 4, we test Equation (5) by the Rao’s score Equation (8), and get ec by Equation (44),
and &g by the p-value with one of choices in Table 2.

(b) Extend all the above studies on Equation (3) with y; = w'x; replaced by the bi-linear
form Equation (18).

(c) Make a survival analysis via the Cox regression by Equation (13) in comparison with its
bi-linear extension by Equations (18) or (40). Again, IHT is made by ep, ec, and ep in a way
similar to the above.

BYY harmony

(@) Use either Algorithm 9 in Ref. (Xu, 2015) to get «®, ¢, £0,j = 0,1 or Algorithm 1 to
geta®,CO =0 Q0 i =0,1for model based IHT.

(b) Perform the procedure given in Table 5 for training, testing and validating in a small
size of samples.

It follows from Equation (72) that we get D(Xj0) to be also a 3 x 3 matrix as a collective
measure, which may be further examined to test whether two populations differ signifi-
cantly. We may visualise the matrix by plotting them in two 2D histograms and observe
their configurations.

Conclusions

Statistical analyses for case-control studies have been addressed rather comprehensively.
First, a Kullback-Leibler divergence-based formulation is suggested to develop testing
statistics and discriminative criterion for the case-control studies. Based on this formu-
lation, typical existing methods are revisited, and their matrix-variate counterparts are
developed. Second, a bi-linear matrix form is proposed to obtain the matrix-variate coun-
terparts from existing multivariate statistical analyses, such as discriminative analysis,
logistic regression, Cox model, and linear mixed model. Third, the necessity and feasibil-
ity of integrative hypothesis tests (IHT) are addressed from the complementarity of BMTs
and BBTs in the D-space, together with empirical illustration. Moreover, four basic com-
ponents of IHT are elaborated, and four IHT types are summarised according to how the
components are integrated. Then, in the space of multiple statistics (shortly S-space), the
S-space BBT is proposed to perform BBT based on an unbounded boundary, with the
help of information-preserved decoupling. Moreover, a S-space BBT-based extension of
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univariate one-tail z-test is developed to test the null of multivariate zero mean and then
applied to a multivariate SPD test for detecting a collective inclining dominance for the
case-control studies. Also, a SPD discriminative analysis is proposed with this multivari-
ate SPD test improved and extended to matrix-variate ones. Furthermore, a multivariate
bi-test is proposed to test not only the classic null but also a null about inference reli-
ability due to the complexity of testing space, including a new insight on and a further
development of the Fisher combination. Finally, possible applications have been suggested
for expression-profile-based biomarker finding and exome-sequencing-based joint SNV
detection.
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