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Abstract

Blind image quality assessment (BIQA) is a challenging task due to the difficulties in
extracting quality-aware features and modeling the relationship between the image
features and the visual quality. Until now, most BIQA metrics available try to extract
statistical features based on the natural scene statistics (NSS) and build mapping from
the features to the quality score using the supervised machine learning technique
based on a large amount of labeled images. Although several promising metrics
have been proposed based on the above methodology, there are two drawbacks of
these algorithms. First, only the labeled images are adopted for machine learning.
However, it has been proved that using unlabeled data in the training stage can
improve the learning performance. In addition, these metrics try to learn a direct
mapping from the features to the quality score. However, subjective quality evaluation
would be rather a fuzzy process than a distinctive one. Equally, human beings tend to
evaluate the quality of a given image by first judging the extents it belongs to “excellent,”
“good,” “fair,” “bad,” and “poor,” and estimating the quality score subsequently, rather than
directly giving an exact subjective quality score. To overcome the aforementioned
problems, we propose a semi-supervised and fuzzy framework for blind image quality
assessment, S2F2, in this paper. In the proposed framework, (1) we formulate the fuzzy
process of subjective quality assessment by using fuzzy inference. Specially, we model
the membership relation between the subjective quality score and the truth values it
belongs to “excellent,” “good,” “fair,” “bad,” and “poor” using a Gaussian function,
respectively; and (2) we introduce the semi-supervised local linear embedding (SS-LLE) to
learn the mapping function from the image features to the truth values using both the
labeled and unlabeled images. In addition, we extract image features based on NSS
since it has led to promising performances for image quality assessment. Experimental
results on two benchmarking databases, i.e., the LIVE database II and the TID2008
database, demonstrate the effectiveness and promising performance of the proposed
S2F2 algorithm for BIQA.
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Background
Image quality assessment (IQA) is a practical research project and has been attracting in-

creasing attentions during the past decades due to the dramatic development of visual

equipment, such as TVs, digital cameras, and mobile phones. The quality of these equip-

ments and the images we obtained by using these equipment affects the information per-

ception of human beings. However, we cannot obtain the undistorted version of these

images in most cases. Therefore, it is necessary to develop blind IQA (BIQA) algorithms to

estimate the visual quality of these images to help us choose a better equipment or image.

Due to the limited exploration of human visual system (HVS) and the mechanism

of subjective quality assessment, it is a challenging task either to extract quality-

aware features or build the relationship between the image features and the visual

quality. It is therefore of great difficulty to develop effective BIQA metrics, especially

universal BIQA (UBIQA) metrics which can work for various types of distortions.

Until now, most BIQA metrics available try to extract statistical features based on

the natural scene statistics (NSS) (Brandao and Queluz 2008) and learn the mapping

function from the features to the quality score using the supervised learning tech-

nique based on a large amount of labeled images (Moorthy and Bovik 2010; Jung

et al. 2002; Charrier et al. 2006). Although several promising BIQA metrics have

been proposed based on this methodology, there are two drawbacks of these algo-

rithms. First, only the labeled images are adopted for machine learning. However, it

has been proved that using unlabeled data in the training stage can improve the

learning performance (Yang et al. 2006). In addition, these metrics try to learn the

direct mapping function from the image features to the quality score. However, sub-

jective quality evaluation would rather be a fuzzy process than a distinctive one.

Equally, human beings tend to evaluate the quality of a given image by first judging

the extents it belongs to “excellent,” “good,” “fair,” “poor,” and “bad,” and estimating

the quality score subsequently, rather than directly giving an exact subjective quality

score. This is consistent with the subjective experiments conducted for constructing

the IQA databases (Sheikh et al. 2003).

To overcome the aforementioned problems, we propose a semi-supervised and fuzzy

framework for blind image quality assessment, S2F2, in this paper. In the proposed

framework, we formulate the fuzzy process of subjective quality assessment by using

fuzzy inference. Specially, we model the membership relation between the subjective

quality score and the truth values it belongs to “excellent,” “good,” “fair,” “poor,” and

“bad” using a Gaussian function, respectively. Secondly, we introduce the semi-

supervised local linear embedding (SS-LLE) (Yang et al. 2006) to learn the mapping

function from the image features to the truth values using both the labeled and

unlabeled images. In addition, we extract image features based on NSS since it has led

to promising performances for IQA. Experimental results on two benchmarking

databases, i.e., the LIVE database II (Sheikh et al. 2003) and the TID2008 database

(Ponomarenko et al. 2009), demonstrate the effectiveness and promising performance

of S2F2.

The rest of this paper is organized as follows. In the Related works section, we intro-

duce some related works, including blind image quality assessment, semi-supervised

learning, and fuzzy logic inference. The proposed S2F2 metric is detailed in the Semi-

supervised and fuzzy framework for blind image quality assessment section. The
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Experiments and analysis section presents the experiments conducted on the LIVE

database II and the TID2008 database. Finally, the Conclusions section concludes this

paper.
Related works
Blind image quality assessment

The past five years have witnessed the emergence of various new BIQA algorithms

(Saad et al. 2012; Moorthy and Bovik 2011; Mittal et al. 2012a; Mittal et al. 2012b;

Mittal et al. 2012c; Mittal et al. 2013; He et al. 2012; Ye and Doermann 2012; Moorthy

and Bovik 2010; Sheikh et al. 2005; Wang et al. 2002; Ciancio and da Costa 2011; Gao

et al. 2009; Brandao and Queluz 2008; Jung et al. 2002; Charrier et al. 2006). These

BIQA metrics can be broadly divided into two categories: the distortion-specific metrics

and the universal metrics. The former means the BIQA metrics can only work on a

specific type of distortion or the type of distortion should be given before using the

metrics (Sheikh et al. 2005; Wang et al. 2002; Ciancio and da Costa 2011). In contrast,

the universal BIQA metrics can work on various types of distortions without given the

information of distortions (Saad et al. 2012; Moorthy and Bovik 2011; Mittal et al.

2012a; Mittal et al. 2012b; Mittal et al. 2012c; Mittal et al. 2013; He et al. 2012; Ye and

Doermann 2012; Moorthy and Bovik 2010). Since we aim to construct a universal

BIQA metric in this paper, a compact introduction of the state-of-the-art universal

BIQA metrics is given below.

Saad et al. (2012) introduced a NSS-based model, blind image integrity notator using

DCT statistics (BLIINDS-II). It uses the univariate generalized Gaussian density (GGD)

model (Varanasi and Aazhang 1989) to formulate the distribution of discrete cosine

transform (DCT) coefficients and uses the parameters of univariate GGD as features to

predict the quality score. Specially, BLIINDS-II relies on a simple Bayesian probabilistic

inference model to predict image quality scores.

The distortion identification-based image verity and integrity evaluation (DIIVINE)

proposed by Moorthy et al. (Moorthy and Bovik 2011) is based on a two-stage frame-

work of a NSS-based model. In DIIVINE, a classifier is first utilized to estimate the dis-

tortion type contained in the given image, and then, a distortion-specific BIQA

regression metric learned for each possible type of distortion is adopted to estimate the

image quality. In addition, DIIVINE extracts image features based on NSS by integrat-

ing the wavelet transform and Gabor transform.

Mittal et al. (2012a) introduced a new perspective of image features using the empir-

ical distribution of locally normalized luminance which is under a spatial NSS model to

quantify possible losses of “naturalness” in the image and proposed the blind/ referen-

celess image spatial quality evaluator (BRISQUE) metric. The quality score is estimated

by using a support vector regression (SVR) module in BRISQUE. An improved version

of BRISQUE (Mittal et al. 2012b) is proposed afterward, which utilizes a robust statis-

tics approach based on the L-moments (Hosking 1990). The L-moments method makes

BRISQUE less sensitive to empirical variations in NSS statistics.

In (He et al. 2012), He et al. proposed a sparse representation of natural scene statis-

tics (SRNSS) model based on the hypothesis that the feature space and subjective qual-

ity space share an almost same intrinsic manifold. In SRNSS, a dictionary which
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includes the image features and subjective quality scores is first constructed. For a

given test image, its NSS features are then extracted and encoded in the dictionary via

sparse representation, and the coding coefficients are adopted to weight the corre-

sponding subjective quality for estimating its quality. Similarly, Ye and Doermann

(2012) used Gabor-filter-based features extracted from local image patches to construct

visual codebook and then learned the mapping function from the quantized feature

space to the image quality score using both sample-based and learning-based methods.

All these aforementioned metrics need a large amount of human-rated images for training

or constructing the dictionary/codebook. However, the subjective quality evaluation is time

consuming and very expensive. To overcome this problem, Mittal et al. has developed two

metrics, topic model of image quality assessment (TMIQA) (Mittal et al. 2012c) and nat-

ural image quality evaluator (NIQE) (Mittal et al. 2013). In TMIQ, patches extracted from

natural and distorted images are adopted to construct a set of visual words. For a test image,

probabilistic latent semantic model (pLSA) (Hofmann 2001) is first introduced to estimate

the associated visual word distribution. Afterward, the quality of the test image is estimated

by comparing the estimated distribution and the average distribution of the natural images.

NIQE is based on the distribution of the statistical features proposed in BRISQUE. And the

distribution is modeled by the multivariate Gaussian (MVG) (Eaton 1983). In NIQE, the

average distribution of the features computed from patches of a set of natural images is

utilized as the benchmark. For a test image, its feature distribution is first estimated, and

then, its quality is predicted as the distance between the MVG fit to its feature distribution

and the MVG fit to the benchmark.

Yet, the performances of these metrics are still not adequate enough. Most of the

BIQA metrics above construct a black-box mapping from the features to the quality

score which fail to take not only the manifold ways of human visual perception (Seung

and Lee 2000) but also the unlabeled images into account. Meanwhile, the intuitive

knowledge of human perception would rather be a fuzzy process than a discriminative

one, which further limits the performance of these metrics.
Semi-supervised learning

The interest in semi-supervised learning has increased in recent years, particularly

because of application domains where unlabeled data are plentiful in large volumes

of high-dimensional data, such as images, text, and bioinformatics. Semi-supervised

learning addresses this problem by using the unlabeled data, together with the la-

beled data, to build better classifier (Zhu et al. 2009). Because semi-supervised learn-

ing requires less human effort and gives higher accuracy, it is of great interest both

in theory and in practice.

Many machine learning researchers have found that unlabeled data, when used in

conjunction with a small amount of labeled data, can produce considerable improve-

ment in learning accuracy (Cozman et al. 2003). Semi-supervised learning also shows

potential as a quantitative tool to understand human category learning, where most of

the input is self-evidently unlabeled (Zhu et al. 2009). In recent years, many researchers

have considered that real word data may live on or close to a lower dimensional space

(Seung and Lee 2000). If a pristine image has a continuous family of distorted images,

the visual memory of them is hypothesized to be stored as a manifold of stable states,
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or represented by a continuous attractor (Seung and Lee 2000). However, more natural

learning problems may also be viewed as instances of semi-supervised learning. The

learning process of image in human mind involves a small amount of direct instruction

combined with a large amount of unlabeled experience.

Until now, there have been various popular semi-supervised learning models, e.g.,

semi-supervised support vector machines (SVM) (Zhu 2006), transductive SVMs

(Vapnik 1998), semi-supervised locally linear embedding (SS-LLE) (Yang et al. 2006),

and so on. Zhu et al. conducted an experiment that demonstrates semi-supervised

learning behavior in humans (Zhu et al. 2007). Yang et al. (2006) extend the traditional

locally linear embedding (LLE) (Roweis and Saul 2000) to SS-LLE which is of great

practical value to reduce human annotators and improve accuracy. The essence of

SS-LLE is to use both the labeled and unlabeled data points to approximate manifold

structure as smoothly as possible, learn compact representation of images for data

visualization, and recover global nonlinear structure from locally linear fits. This kind

of “Think globally, fit locally” manner (Saul and Roweis 2003) makes the SS-LLE better

in formulating the process of human perception.

It has been proved in many applications that SS-LLE reduces the computational com-

plexity and outperforms other data mining or machine learning methods, such as di-

mension reduction (Yang et al. 2006) and image processing (Xiao et al. 2011; Zhang

et al. 2009). SS-LLE has the advantage of yielding global low-dimensional coordinates

that bear the same physical meaning. SS-LLE shows potential as a quantitative tool to

understand human category learning, where most of the input is self-evidently un-

labeled. In BIQA problem, we cannot grade an image directly but can easily sequence

it in a large amount of images. The clue to this phenomenon is that perception is mani-

fold, deriving from the studies of neurons (Seung 1998). Therefore, we inherit the ad-

vantages of SS-LLE to BIQA which is capable and competent in learning the mapping

function from the features to the truth values.
Fuzzy logic

The term “fuzzy logic” was introduced in fuzzy set theory proposed by Zadeh (1965).

In a nutshell, the basic principle of fuzzy logic is a matter of degree and it deals with

reasoning that the real world is approximate rather than fixed and exact (Zadeh 1988).

Fuzzy logic handles the concept of partial truth, where the truth value may range be-

tween completely true and completely false. This leads to a system for computing with

linguistic variable (Zadeh 1996).

Fuzzy logic has been applied to many fields, e.g., control theory (Sugeno and Yasukawa

1993), artificial intelligence (Sathacopoulou et al. 1999), and image processing (Choi and

Krishnapuram 1997; Ahmed et al. 2002), and has led to promising performances. It is

becoming abundantly clear that the role model for fuzzy logic is the human mind and

there is much to be gained by exploiting the tolerance for imprecision in dealing with real

word problems, such as IQA.

Subjective quality assessment should be a kind of practical research topic computing

with words rather than an exact score, because human employ linguistic variables or

words, such as “bad” and “good,” to describe the quality of an image in general. The in-

tuitive knowledge of our mind about image quality is about classification. In human

http://en.wikipedia.org/wiki/Fuzzy_set_theory#Fuzzy%20set%20theory
http://en.wikipedia.org/wiki/Reasoning#Reasoning
http://en.wikipedia.org/wiki/Control_theory#Control%20theory
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visual system, instead of exact score, the subconscious feeling of an image the moment

we see it is about good feasibility. Therefore, it is practical and more convenient to

make a fuzzy description or classification of image in IQA.

More recent work has shown that infants and children take into account not only the

unlabeled examples available but also the sampling process from which labeled exam-

ples arise (Gweon et al. 2010). This reminds us of the criterion for image quality assess-

ment. Since human is the termination of all multimedia and images are analyzed and

comprehended in visual system, subjective quality assessment is the most reasonable

criterion for IQA.

In the recommendation of subjective quality assessment, (ITU-R BT.500-11, 2002) is

the Methodology for the subjective assessment of the quality for television pic-

tures, the categorical judgment method is adopted. The grading defined in ITU-R

BT.500-11 is a five-grade impairment scale: 5 imperceptible, 4 perceptible but not an-

noying, 3 slightly annoying, 2 annoying, and 1 very annoying, corresponding to “excel-

lent,” “good,” “fair,” “poor,” and “bad,” shown in Table 1. A word is viewed as a label of

a granule, that is, a fuzzy set of points drawn together by similarity. For example, “good

image” can be the combination of large amounts of images which has the character of

“good” but expressed in other form. However, the quality is defined as to consist of spe-

cific perceptual attributes and expressed in numbers or symbols. Therefore, the fuzzy

modeling of image quality is somewhat intermediate, which can reduce the granularity of

the image’s characterization and suit with linguistic approximation. This tolerance for im-

precision in BIQA can be exploited to achieve tractability, robustness and better rapport

with reality (Zadeh 1996).
Methods
Semi-supervised and fuzzy framework for blind image quality assessment

The semi-supervised and fuzzy framework proceeds as follows. Firstly, we extract image

features based on NSS because NSS is a comprehensive description of natural images

and has led to promising performances for image quality assessment. Secondly, we for-

mulate the fuzzy process of subjective quality assessment by using fuzzy logic. Specially,

we model the membership relation between the subjective quality score and the truth

values it belongs to “bad,” “poor,” “fair,” “good,” and “excellent” using a Gaussian-based

membership function, respectively. Thirdly, we introduce SS-LLE to learn the mapping

from the image features to the truth values using both the labeled and unlabeled im-

ages. The quality score is finally estimated based on the truth values. The framework of

the S2F2 for BIQA is illustrated in Fig. 1.
Table 1 ITU-R quality and impairment scales in BT.500-11

Level Impairment Quality

5 Imperceptible Excellent

4 Perceptible, but not annoying Good

3 Slightly annoying Fair

2 Annoying Poor

1 Very annoying Bad
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Fig. 1 The proposed semi-supervised and fuzzy logic framework for BIQA. a is natural scene statistics
features. b is quality score fuzzification. c is semi-surpervised local linear embedding. d is qualtiy estimation
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A. Natural scene statistics features

Learning the compact representation of the images is helpful for data visualization and

quality assessment. Images are naturally multiscale, and therefore, there exists a decom-

position module in the early visual system. The wavelet transform performs mirror

models of spatial decomposition that occurs in area V1 of the primary visual cortex

(Buccigrossi and Simoncelli 1999) and has been previously used for many reference

IQA methods with success (Moorthy and Bovik 2011; He et al. 2012).

In order to capture the statistical properties of natural scenes that hold across differ-

ent contents, we utilize the mature wavelet transform approach which is scale, space,

and orientation selectivity. An input image I is decomposed into wavelet coefficients.

After taking some attempts in the selection of scales, we found that three-scale decom-

position provides compact and adequate information, which would be 10 wavelet sub-

bands in total. However, the vertical and horizontal subbands in the same scale are

approximately the same. Thus, we combine them through averaging which makes the

number of subbands into 6. For each subband, we extract the magnitude feature mk

which signifies the size information of the coefficients to encode the generalized spec-

tral behavior, and the entropy feature ek which shows the distribution and relation of

the coefficients to represent the generalized information, as follows.

mk ¼ 1
Nk �Mk

XNk

j¼1

XMk

i¼1

log2 Ck i; jð Þj j ð1Þ

ek ¼
XNk

j¼1

XMk

i¼1

p Ck i; jð Þ½ � lnp Ck i; jð Þ½ � ð2Þ

where Mk and Nk (k = 1, 2,…, 6) are the length and width of the kth subband, respect-
ively, and Ck(i, j)stands for the(i, j) coefficient of the kth subband, and p[⋅]is the
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Fig. 2 Magnitudes of the wavelet coefficients for different DMOS decay exponentially across scales

Lu et al. Applied Informatics  (2015) 2:9 Page 8 of 20
probability density function. As features go, stack these 12 statistics to form a single

vector which is called NSS.

f ¼ m1;m2;…;m6; e1; e2;…; e6½ �T ð3Þ

The relationship between the features and the quality can be visualized by the feature
we present above. The magnitude spectra of the reference images have the similar ex-

ponential decay characteristics across scales while the distorted ones have different

downtrend which is certainly less specific in their representation of a particular image,

so they can be suitable for representing the generalized behaviors of natural scenes.

The distribution of magnitudes mk follows the law that the increase of distortion degree

brings out the sharper decrease and stronger persistence at fine scales, shown in Fig. 2

(He et al. 2012). Therefore, the features extracted by NSS are quality aware. In this

paper, we apply this speciality to conduct semi-supervised manifold which can help

learn the mapping from the features to the quality.
B. Quality score fuzzification

In ITU-R BT.500-11, observers are required to assign an image to one of five categories

which are defined in semantic terms, which reminds us of using linguistic variables in

place of or in addition to numerical variables in practical application (Zadeh 1988). Mean-

while, Gaussian function is commonly used to model the fuzzy membership. As a result,

we design the Gaussian-based fuzzy membership functions which use five primary terms

“excellent,” “good,” “fair,” “poor,” and “bad” as primary terms and treat other words as the

modification of primary terms. The form of functions is shown in Fig. 3.

In our Gaussian-based fuzzy membership functions, the meanings of the words are

represented by functions mapping to five quality scales. The mean of each Gaussian

distribution represents the primary term and the variance details the possible distribu-

tion. As a result, each difference mean opinion scores (DMOS) corresponds to five

truth values. It is easy to get that relative large variance gets closer to human



Fig. 3 The proposed fuzzy membership functions for five categories of image qualities
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perception, because many “good” images can be kind of “poor.” These five truth values

are expressed in terms of fuzzy membership function, shown as

sl ¼ f DMOSð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

DMOS−μlð Þ2
2σ2 ð4Þ

l ¼ 1; 2;…; 5and

s ¼ s1; s2;…; s5½ �T ð5Þ

The fuzzy expression models the process of human perception and represents the qual-

ity of an image in five truth values instead of an absolute score. In addition, the fuzzifica-

tion of the quality score increases the volumes of information. And the experimental

results demonstrate the effectiveness of the fuzzification approach. The characterization

of the image is better in five truth values than in one quality score which makes the granu-

larity of image smaller.

C. Semi-supervised local linear embedding

We combine features and truth values of both labeled and unlabeled images. fi is the

feature vector of the ith image. Stack all the features to form the feature space ℝD.

F ¼ f 1; f 2;…; f N½ �; and
f i∈ℝ

D i ¼ 1; 2; 3;…;Nð Þ ð6Þ

DivideFas[F1, F2], where F1 represents the features of labeled images and F2 repre-

sents the unlabeled ones for test.

F1 ¼ f 1; f 2;…; f cð Þ; and
F2 ¼ f c; f cþ1;…; f N

� � ð7Þ

Let sil be the lth truth value for the ith image. All the truth values form the label
space ℝd.
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Fig. 4 The procedure of semi-supervised local linear embedding
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S ¼
s11 s12 ⋯ s15
s21 s22 ⋯ s25
⋮ ⋮ ⋯ ⋮

sN1 sN2 ⋯ sN5

2
664

3
775; and

sil∈ ℝd i ¼ 1; 2; 3;…;N ; l ¼ 1; 2;…; 5ð Þ

ð8Þ

PartitionSas[S1, S2], where S1represents the truth values for the labeled images and S2

corresponds to the other ones. Nis the total number of images in our experiment, and

c is the number of labeled images.

S1 ¼ s1; s2;…; scð Þ; and ð9Þ

S2 ¼ sc; scþ1;…; sNð Þ ð10Þ

Given the input feature points and the output labeled points, the SS-LLE consists of
three steps (Yang et al. 2006) shown in Fig. 4:

Step 1: Find the k nearest neighbors for each feature point fi based on the Euclidean

distance.

Step 2: Compute the reconstruction coefficient by minimizing the reconstruction

error which is measured as

ε Wð Þ ¼
XN
i¼1

f i−
Xk
j¼1

Wijf j

�����
�����
2

ð11Þ

Subject to constraint:
XN

j¼1
Wij ¼ 1 (i = 1, 2,⋯N).

Step 3: Compute the low-dimensional embedding.

The low-dimensional embedding is found through the following minimization.

ϕ Sð Þ ¼
XN
i¼1

γi−
Xk
j¼1

Wijγ j

�����
�����
2

2

¼ SMST ð12Þ
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Subject to two constraints:
XN

i¼1
γ i ¼ 0 and 1

N

XN

i¼1
γTi γ i ¼ I , matrix Mis constructed

based on the matrix W: M = (1 −W)T(1 −W). The resulting problem is equivalent to find-

ing the smallest d + 1 eigenvectors of matrixM. M is partitioned into four parts:

M ¼ M11 M12

M12
T M22

� �
ð13Þ

M11 is a matrix of size c × c, referred to labeled images. The minimization problem
can be written as

min
S2

S1; S2½ � M11 M12

M12
T M22

� �
ST1
ST2

� �
ð14Þ

Equivalently,

min
S2

S2M22ST2 þ 2S1M12ST2 ð15Þ

Set the gradient of the above objective function to 0
M22S2T ¼ M12ST1 ð16Þ

Therefore, the S2 ∈ R
d of the unlabeled images is

S2 ¼ M12S1T

M22

� 	T

ð17Þ

S2 includes the five truth values associated with the unlabeled images. As a part of
unlabeled images, the test image participates in SS-LLE. Its features f are contained in

F2, and truth values st are contained in S2.

D. Quality estimation

In this section, we introduce two different approaches for quality estimation. The first

one concludes a defuzzification module to keep in step with traditional IQA metrics.

However, practical applications call for non-numeric descriptors rather than one quality

score. We consider expressing image quality in words or linguistic variables. By com-

parison, the second approach takes the five truth values obtained from SS-LLE for the

final result of image quality. For clarity, the first approach is referred as S2F2-I and the

second is referred as S2F2-II in the following part of this paper.

S2F2-I: To obtain the traditional “quality” of images, we should defuzzify the five truth

values obtained in the learning module. Defuzzification is the process of producing a

quantifiable result in fuzzy logic, given the fuzzy sets and corresponding membership

degrees. Defuzzification is interpreting the membership degrees of the fuzzy sets into a

specific decision or real value. For example, five truth values deciding how good are the

test images might result in “excellent (0.35), good (0.56), fair (0.64), bad (0.92), poor

(0.63),” but finally expressed in one score “28.” By calculating the area under the scaled

membership functions and then within the range of the output variable, we adopt the

center of area (CoA) defuzzification method. The formula of CoA is
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Q ¼ defuzz stð Þ ¼

X5
i¼1

stμi

X5
i¼1

μi

ð18Þ

As stated earlier, S2 are the output labels of SS-LLE for the test image. The outco-
meQ, ranging from 0 to 100, is the final quality score of the test image. The CoA defuz-

zification method effectively calculates the best compromise between multiple output

truth values.

S2F2-II: The S2F2-I method defuzzify the five truth values obtained from SS-LLE to

get one quality score which is the tradition of BIQA. However, the subconscious feeling

of an image the moment we see it is about good feasibility which is expressed in words

rather than exact score. In view of the practical application, we directly adopt the esti-

mated five truth values as the presentation of the image quality.

Q ¼ st ð19Þ

The five truth values for each of the five functions represent the degrees of truth they

belong to “excellent,” “good,” “fair,” “poor,” and “bad.” This estimation method makes

the assessment much closer to human behavior.

Results and discussion
Experiments and analysis

To verify the effectiveness of the proposed S2F2-I and S2F2-II metrics, we test them on

two benchmarking databases: the LIVE database II (Sheikh et al. 2003) and the

TID2008 database (Ponomarenko et al. 2009). The LIVE database II consists of 29 ref-

erence images and 779 distorted images that span various distortion types—JPEG2000

compression (JP2K), JPEG compression (JPEG), additive white Gaussian noise (WN),

Gaussian blurring (Gblur), and fast fading (FF), along with the associated subjective hu-

man DMOS, which are representative of the perceived quality of the image. The

TID2008 database contains 1700 test images and 25 reference images over 17 distor-

tion categories, 4 different levels. We test our algorithm only on the four distortions

JPEG, JP2K, WN, and Gblur of TID2008 as done in Saad et al. (2012), Moorthy and

Bovik (2011), Mittal et al. (2012a) and Mittal et al. (2012b).

The indices considered in the experiment are the Spearman’s rank ordered correl-

ation coefficient (SROCC) and the linear (Pearson’s) correlation coefficient (LCC). A

value close to 1 for SROCC and LCC indicates superior correlation with human per-

ception. In original LLC calculation for S2F2-I, each point in the group of quality repre-

sents an image for test. It is meaningful to declare that the LCC for S2F2-II is

formulated as:

LCC ¼

XN−c

i¼1

st i−�stð Þ si−�sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−c

i¼1

st i−�stð Þ2 si−�sð Þ2
s ð20Þ
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st is the predict quality in form of five truth, values and sis the original fuzzy subject-

ive DMOS which is also in five words. In the LCC for S2F2-II, a point is no longer the

representation of an image, but five points cooperate in presenting an image. This

makes the LLC change from a 1-to-1 calculation to 5-to-5 calculation.

We conduct several experiments to verify the consistency between the proposed

BIQA metrics and subjective IQA, and their robustness to the training set, the selection

of the parameters, and the databases. Details are introduced in the following

subsections.
Consistency experiments

S2F2-I and S2F2-II approaches require a training stage in order to learn the mapping

function from the features to the subjective image quality score. We randomly select

part of the LIVE database II for labeled images set and the rest for unlabeled set. The

manifold module of SS-LLE learns the mapping from the image features to the truth

values using both the labeled images set and unlabeled images set. In order to ensure

that the proposed approaches S2F2-I and S2F2-II are robust across content and are not

governed by the specific train-test split utilized, we repeat this random selected train

1000 times on the LIVE database II and evaluate the average performance.

We compare the proposed metrics with the state-of-the-art BIQA metrics, i.e., the

natural scene statistics (NSS) (Ciancio and da Costa 2011), the distortion identification-

based image verity and integrity evaluation (DIIVINE) (Moorthy and Bovik 2011), the

blind image quality index (BIQI) (Moorthy and Bovik 2010), the blind image integrity

notator using DCT statistics (BLIINDS-II) index (Saad et al. 2012), the blind/ reference-

less image spatial quality evaluator (BRISQUE) (Mittal et al. 2012a), the sparse repre-

sentation of natural scene statistics (SRNSS) (He et al. 2012), the natural image quality

evaluator (NIQE) (He et al. 2012), and the codebooks image quality (CBIQ) (He et al.

2012). In addition, we adopt several classic full-reference (FR) IQA metrics as the

benchmarks, the peak signal-to-noise ratio (PSNR), the structural similarity (SSIM)

(Wang et al. 2004), and the visual information fidelity (VIF) (Sheikh and Bovik 2006).
Table 2 Median LCC across 1000 train-test on the LIVE database II

Metric Type JP2K JPEG WN Gblur FF Entire database

PSNR FR 0.8962 0.8596 0.9858 0.7834 0.8895 0.8240

SSIM FR 0.9367 0.9283 0.9695 0.8740 0.9428 0.8634

IFC FR 0.9027 0.9047 0.9581 0.9608 0.9614 0.9106

VIF FR 0.9615 0.9430 0.9839 0.9744 0.9618 0.9501

NSS Blind 0.9210 0.3661 0.8217 0.7007 0.7224 0.4946

BIQI Blind 0.8086 0.9011 0.9538 0.8293 0.7328 0.8205

DIIVINE Blind 0.9220 0.9210 0.9880 0.9230 0.8880 0.9170

BLIINDS-II Blind 0.9630 0.9793 0.9854 0.9481 0.9436 0.9232

SRNSS Blind 0.9359 0.9391 0.9404 0.9356 0.9473 0.9318

BRISQUE Blind 0.9229 0.9734 0.9851 0.9506 0.9093 0.9424

NIQE Blind 0.9370 0.9564 0.9773 0.9525 0.9128 0.9147

CBIQ Blind 0.912 0.963 0.959 0.918 0.885 0.896

S2F2-I Blind 0.9578 0.9489 0.9668 0.9556 0.9370 0.9464



Fig. 5 Predicted Q vs. subjective DMOS on the entire LIVE database
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The realizations of DIIVINE, BIQI, BLIINDS-II, and BRISQUE are available online, and

the results of SRNSS, NIQE, and CBIQ are obtained in Mittal et al. (2013), He et al.

(2012), and Ye and Doermann (2012). The index comparison results are shown in

Table 2.

The number of the nearest neighbors k selected in the first step of SS-LLE is 70. The

scale of fuzzy membership function l is determined to be 5 in view of the ITU-R

BT.500-11. The variance of Gaussian distribution σ is 90. The size of the training set is

selected to be 23 groups of the LIVE database II.

In this subsection, we present the performances of S2F2-I and S2F2-II. As an im-

proved version of S2F2-I, S2F2-II makes the index calculation to be a 5-to-5 comparison.

It is unreasonable to compare S2F2-II with other available BIQA methods, but feasible

with S2F2. Therefore, we present them separately.

The performance of S2F2-I

Figure 5 shows the scatterplots and the nonlinear curve fittings between the estimated

quality score by S2F2-I and DMOS across the entire test set in one trial. Table 2 shows
Fig. 6 Boxplot of LCC distributions of S2F2-I and S2F2-II in five scales on LIVE database
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that S2F2-I achieves the highest accuracy of 0.9464, outperforming the other methods.

More crucially, S2F2-I makes about 2 % improvement over BLIINDS-II and is superior

to other holistic BIQA approaches. S2F2-I approach is also competitive with PSNR, the

most popular FR-IQA metric. This demonstrates that features we extracted are quality

aware, that SS-LLE formulates the manifold perception well, and that the concept of

fuzzy logic reduces the granularity of the image’s characterization.

In general, the S2F2-I proposed in this paper has a good consistence with human sub-

jective perception. In comparison with other metrics, this proposed S2F2-I BIQA algo-

rithm obtains better performances.

The performance of S2F2-II

In this part, we present the comparative performance of S2F2-I and S2F2-II to demon-

strate the advancement of S2F2-II. To visualize the statistical significance of the com-

parison, we compare the boxplots of the LCC values during the 1000 experimental

trials, as shown in Fig. 6. It is notable that the performance of S2F2-II is much better

than S2F2-I for every distortion type. The reason behind this improvement is that lin-

guistic variables reduce the granularity of an image in calculation and better imitate the

human visual perception. Five truth values represent five degrees of memberships

which is not a hard division but a cooperation of fuzzy language.

Another attempt at fuzzy logic is to change the fuzzy scales from five to three, with

the final result in the form of fuzzy words. The three scales stands for three primary

terms “good,” “fair,” “bad,” which is clearer than the five scales introduced in ITU-R

500-11. Because of the difference in index calculation, this 3-to-3 S2F2-II metric cannot

be compared to state-of-the-art general purpose BIQA, but comparable to three-scale

S2F2-I, as shown in Fig. 7. As shown in the Table 3, 3-to-3 S2F2-II outperforms three-

scale S2F2-I with an accuracy of over 0.9602 on the LIVE database II, broke though the

record in BIQA. This reminds us of changing the criterion for quality.

Robustness to the size of the training set

In this section, we verify the performance of the proposed BIQA metrics when only a

small amount of data is available. To conduct this experiments, we choose K group(s)
Fig. 7 Boxplot of LCC distributions of S2F2-I and S2F2-II in three scales on LIVE database



Table 3 Median linear correlation across 1000 train-test on the LIVE database II

Metric LCC

S2F2 5 scale 0.9464

S2F2-II 5-5 0.9560

S2F2 3 scale 0.9453

S2F2-II 3-3 0.9602
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of images for training and the rest for test, K = 1, 2, …, 28, and run the training-test

procedure 1000 times. One group means one reference image and the distorted images

derived from it. Figure 8 shows the median LCC of S2F2-I and S2F2-II during the 1000

trials when we choose different sizes of training sets. It is obvious that LCC increases

with the size of the training set. And even when only three groups of images are chosen

for training, the LCC of S2F2-I is as large as 0.81, and the LCC of S2F2-II is 0.86. In

addition, the LCC of both S2F2-I and S2F2-II become larger than 0.90 when only 10

groups of images are for training, which only takes a part of 1/3 of the entire data set.

Clearly, the proposed metrics are robust to the size of the training set.
Robustness to parameters

To verify how the parameters affect the performance of the proposed method, we con-

duct experimental studies on influential factors of S2F2-I and S2F2-II in this section. We

repeat the training-test procedure 1000 times on the LIVE database II and calculate the

median performance. In our experiments, four parameters utilized in the proposed frame-

work are considered: the form of membership function, the scale of fuzzification l, the

variance of the Gaussian membership function σ, and the neighborhood selection k. The

experiments are divided into four parts.

We only change one of the parameter to testify the effectiveness in each part, with

other parameters unchanged: k = 70, l = 5, and σ = 90. The size of the training set is 23.

Both S2F2-I and S2F2-II are conducted in five scales and three scales, respectively, if

there is no special to declare.
Fig. 8 The median LCC of S2F2-I and S2F2-II when choosing different sizes of training sets



Fig. 9 Membership function. a Linear function. b Quadratic function
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Membership function

Apart from the Gaussian distribution, we also try two other functions in the design of

fuzzy logic: piecewise linear function and quadratic function, shown in Fig. 9.

s0 ¼ g DMOSð Þ ¼

1
σ

DMOS−μþ 5ð Þ þ 1; μ−DMOS > 5

1 ; DMOS−μj j≤5
−
1
σ

DMOS−μ−5ð Þ þ 1; DMOS−μ > 5

8>>><
>>>:

s00 ¼ h DMOSð Þ ¼ −
1
σ2

DMOS−μð Þ2 þ 1 ð21Þ

With other parameters remain unchanged, Fig. 9a plots the comparison experimental

results. It can be seen that results of the three functions are almost the same. In
Fig. 10 Parameter comparison. a Function. b Scale. c Variance. d Neighbor



Table 4 Median SROCC across 1000 of different metrics trained on the LIVE database II and tested
on TID2008 database

JP2K JPEG WN Gblur All

PSNR 0.8250 0.8760 0.9230 0.9342 0.8700

SSIM 0.9603 0.9354 0.8168 0.9544 0.9016

BLIINDS-II 0.9157 0.901 0.6600 0.8500 0.8442

DIIVINE 0.924 0.966 0.851 0.862 0.889

BRISQUE 0.832 0.924 0.82 0.881 0.896

S2F2-I 0.9115 0.9143 0.7503 0.8422 0.8761
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aggregate, Gaussian distribution is a little bit better than other functions in our fuzzy

logic framework. That is to say, our fuzzy framework is not sensitive to the form of

membership function.

Fuzzy scales

To illustrate our designation, we conduct totally nine choices for the fuzzy scales. As

can be seen from Fig. 10b, five-scale S2F2-I wins just a minor victory over three-scale

S2F2-I, mostly due to the five-grade subjective assessment taken in the LIVE database

II, and three-scale S2F2-II is better than five-scale S2F2-II. However, the distinction be-

tween them is not always readily apparent. Therefore, the proposed frameworks keep

performing well for different selections of the number of fuzzy scales.

Variance

“Excellent” image can be “poor” image to some extent in human mind. However, we do

not know to what extent the distribution varies. On the premise of Gaussian distribu-

tion, a test for the influence of the variance on quality assessment is shown in Fig. 10c.

The curves of five-level and three-level S2F2-I are almost the same, but S2F2-II drops

with the decreasing of variance. We can draw the conclusion that the proposed BIQA

framework is robust to the variance of the Gaussian function.

Neighborhood selection

The neighbor selection step in SS-LLE is simple to implement, but it can be time con-

suming for large data sets if performed without any optimizations. Meanwhile, SS-LLE

is somewhat sensitive to the selection of the number of the nearest neighbors. Too

much neighbors will cause elimination of small-scale structures in the manifold. In

contrast, too small neighbors may falsely divide the continuous manifold into disjointed

sub-manifolds. Figure 10d demonstrates the effect of neighborhood variety. It is

obvious to choose 70 neighbors for our semi-supervised framework. In addition,

although the performances decrease when the number of the neighborhood is very

small or large, they are still comparative to state-of-the-art BIQA metrics.

In general, the parameters in our framework are insensitive. And S2F2-II is better

than S2F2-I under multiple circumstances of parameters. Therefore, we can decide the

parameters in accordance with actual condition of applications.
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Robustness to databases

In order to demonstrate the algorithm is database independent, we train S2F2-I on the LIVE

database II and test on TID2008. It needs emphasizing that we change the details of Gaussian

distribution in fuzzy membership function to fit new marking standard of TID2008. And al-

though there exists 17 distortion categories, we tested S2F2-I only on these distortions that

it is trained for: JPEG, JP2K, WN, and Gblur. FF distortion does not exist in the TID data-

base. Parameter remains the same: k = 70, l = 5, and σ = 90. The size of the training set is 23.

We also list the performance of PSNR, SSIM, BLIINDS-II, and BRISQUE for com-

parison purposes. The SROCC of S2F2-I metric drops because of the differences in sim-

ulated distortions present in databases and objective evaluation which make the fuzzy

module not precise. However, the correlations are still consistently high. The SROCC

results are shown in Table 4.

Note that it is difficult to perform directly a comparison with all the previously re-

ported work on available database due to the different experimental settings. Neverthe-

less, the performance of S2F2-I on TID2008 database is still very encouraging compared

with the available methods. Therefore, the proposed S2F2-I is robust against the test

data and can be applied to other different databases.

Conclusions
In this paper, we propose a new semi-supervised and fuzzy framework for blind image qual-

ity assessment, called S2F2. Experimental results on the two benchmarking databases dem-

onstrate that S2F2 not only makes an obvious improvement over state-of-the-art BIQA

metrics but also is robust against the selection of parameters contained in the proposed

model. Nevertheless, the proposed framework is still limited while compared with the best

FR-IQA metrics. Improvement and development of S2F2 will be our future work.
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