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Background
Statistical test takes a crucial role in many tasks of machine learning or data informatics 
in general. Classically, a univariate test is considered in various case–control problems 
and particularly in finding susceptibility SNP in computational genomics. Recently, there 
have been an increasing demand on multivariate test for jointly detecting multiple SNPs 
or variables. In these studies, a basic sampling unit is a vector xt = [ x

(1)
t , . . . , x

(d)
t ]T from 

a population, and the problem is testing a null hypothesis H0 that there is a normality 
underlying a set of sample vectors XN = {x1, . . . , xN } from this population. Typically, a 
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statistics is computed from XN to test whether H0 breaks significantly. When the popu-
lation is described by a parametric model, the null hypothesis H0 is typically represented 
as follows

where θ is a vector with its parameters from either a part of � or a function h(�).
Illustrated in Fig.  1 are two typical examples of multivariate test, coming 

from the case–control study. Given two populations of vector-variate samples 
Xω = {xt,ω, t = 1, . . . ,Nω,ω = 0, 1}, where one with ω = 1 is called the case population 
while the one with ω = 0 is called the control population. One important task is examin-
ing whether there is a significant difference between two populations of samples. Shown 
in Fig. 1a is an example of two-sample test in a two-dimensional data space. Test is made 
on Eq. (1) with θ = c1 − c0 that has a multivariate Gaussian distribution when c1, c0 are 
estimated by sample means. Shown in Fig. 1b is an example of testing logistic regression. 
Test is made on Eq.(1) on the coefficient vector θ = β that also has a multivariate Gauss-
ian distribution when β is a maximum likelihood estimate.

Several review papers are available on recent developments of multivariate test for 
detecting multiple variants in GWAS (Bansal et  al. 2010; Ferguson et  al. 2013). From 
a different perspective, a brief overview is provided with four threads on the existing 
methods of multivariate test according to their logical and historical traces.

One originated from using the following Hotelling’s statistics (Hotelling 1931):

for the above two sample test. The dependence across multiple variates, or called the 
linkage disequilibrium (LD) in biology, is considered by the covariance matrix �. How-
ever, this � is poorly estimated when the sample size is small while the number of vari-
ables is usually large. Unfortunately, this is often the case. To address the problem, 
Dempster proposed a non-exact test based on a χ2 approximation (Dempster 1958, 
1960). Also, there are other efforts, e.g. a simplified test with an equivalent asymptotic 

(1)H0 : θ = 0,

(2)T 2 =
N0N1

N
(c1 − c0)

T�−1(c1 − c0), � = α0�0 + α1�1, N = N0 + N1,

Fig. 1  Two examples for case–control study in the 2-dimensional D-space. a A two-sample test on samples 
of two populations with the mean vectors c0, c1 and the covariance matrices �0,�1, as well as the propor-
tions α0,α1. b A test on regression coefficients of a logistic regression
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power to Dempster’s test (BaiZ 1996) and a generalised Hotelling’s T 2 statistic that con-
verges to a normal distribution after a suitable standardisation (Srivastava 2007).

In these methods, asymptotic approximations are used for deriving the significance 
levels of the test statistics under the null. However, when sample size is small and/or 
the data has a high missing rate, the null distributions of the test statistics may differ 
substantially from their asymptotic approximations. Therefore, these studies remain to 
be theoretical. Instead, real efforts either use the Hotelling’s T 2 test directly (Fan and 
Knapp 2003) or impose some structure on the covariance matrix (Swanson et al. 2013), 
and even approximately simplify the covariance matrix into diagonal one but its ability 
of encoding LD information is lost (Kiezun et al. 2012).

The second thread is featured by the extensions of Wald test and Score test for jointly 
multiple hypotheses on single/multiple parameters, and efforts along this thread are 
widely encountered in studies of computational genomics. For a two sample test shown 
in Fig. 1a, it actually leads to the above first thread. Generally, the task is encountered 
in testing Eq. (1) on the coefficients θ = β of multivariate linear regression, multivari-
ate logistic regression, and multivariate linear mixed model (Gudmundsson et al. 2012; 
Demidenko 2013; Zhou and Stephens 2014; Adhikari et al. 2015), as well as Cox regres-
sion analysis (Li and Gui 2004). Still, a use of the Fisher information matrix shares with 
the same problems caused by the covariance matrix. The problems will remain, though 
using multivariate F-test and likelihood ratio test on Eq. (1) may help to improve the 
Wald test and score test.

The third thread originated from Fisher’s combined probability test for combining p 
values (Fishe 1932). However, each p value is merely a positive number that indicates the 
false alarm probability, already losing useful information such as an overall estimate of 
effect size, the direction of effects, and the dependence across effects. Progresses have 
been made by transforming p values into Z statistics or others on which some missing 
issues may be considered (Zaykin 2011), without or with help of information computed 
directly from datasets. Applied to rare variants, efforts made along this thread are typi-
cally referred under the term Meta-analysis (Evangelou and Ioannidis 2013).

The newest thread is featured by efforts in recent years for extending the existing 
GWAS from single variant to multiple rare variants. The basic idea is to let multiple vari-
ants of a unit (e.g. gene, exome, or one other biological unit) to be collapsed or summed 
up into a single one (Li and Leal 2008). Further developments are featured by various 
weighted sums via fixed weights or thresholds (Morgenthaler and Thilly 2007; Chapman 
and Whittaker 2008; WuM et al. 2011; Han and Pan 2010; Lee et al. 2012; Morris 2010; 
Price and Kryukov 2010). Turning multiple variants into a single one, the dimension of 
covariance matrix is thus reduced to lessen the problem of the above first thread. Most 
of these efforts are associated with a generalised linear regression model to test the null 
hypothesis that either the regression coefficients are zero or their variances are zero 
(Chapman and Whittaker 2008; WuM et al. 2011; Han and Pan 2010; Lee et  al. 2012; 
Morris 2010; Price and Kryukov 2010). These studies are recently summarised under the 
names of burden tests and non-burden tests. Burden tests assume that all the variants 
in the target region have effects on the phenotype in the same direction and of similar 
magnitude, while non-burden tests cover various extensions beyond the assumption, for 
which details are further referred to one recent review (Lee et al. 2014).
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In the rest of this paper, we start at discussing two limitations of the existing methods 
for multivariate tests, and then address the following main contexts:

1.	 A new multivariate test formulation that is featured not only by a hierarchy of 
numerous tests organised in a lattice taxonomy of properties that represent different 
causes and different dimensions of the null hypothesis rejection, but also by a theory 
of property-oriented rejection.

2.	 An easy implementation that identifies distinctive properties by the best first path 
(BFP) in a lattice taxonomy that comes from an appropriate number of intrinsic 
factors by decoupling second-order dependence cross multivariate statistics and 
discarding those non-distinctive components. Also, a particular combination that 
does not locate on this BFP may also be conveniently tested in such an taxonomy, if 
needed.

3.	 A further improvement is made by considering some dependence of higher than sec-
ond order, with the p value of the top level refined into one upper bound obtained by 
a directional rejection based on a vectorial property possessed by the alarm in evalu-
ation.

Finally, we discuss several potential applications to expression profile-based biomarker 
identification and exome sequencing-based joint SNV detection.

Methods
Existing methods from a vectorial statistics view: two limitations

Univariate tests are typically implemented in two complementary manners. One is illus-
trated in Fig. 2a. Given a significant level α, we get a boundary point and the red col-
oured rejection domain. For a set of statistics (e.g. those indicated by ‘∗ ∗ ∗ ∗ ∗’), every 
statistics s̃ is classified into either the rejection domain or the acceptance domain. Those 
falling into the rejection domain can all identify a significant rejection of H0, featured by 
a worst-case false alarm probability α. Here, each statistics s̃ has not been provided with 
its accurate false alarm probability though such a probability could be much smaller than 
α especially when the corresponding statistics locates far away from the boundary point.

Alternatively, we may implement a test as illustrated in Fig. 2b. Judging whether a sta-
tistics s̃ identifies a significant rejection of H0, we directly use s̃ as the boundary point to 
get the red coloured rejection domain, and then estimate the p value associated with s̃, 

Fig. 2  A vectorial statistics view on the existing multivariate tests. a Univariate tests implemented for identi-
fying whether a statistics s̃ leads to the rejection of H0 in a significant level α; b Univariate tests implemented 
for computing the p value, i.e. the probability that those false alarms disturb or confuse the judgement on s̃
; c In the two-dimensional space of s, the acceptance domain is an ellipse (grey coloured) specified by Eq. (3), 
corresponding to the acceptance range of (a, b), while the rest of the entire space is the rejection domain
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i.e. the probability that those false alarms (statistics of samples that come under H0) fall 
in the rejection domain. Instead of deciding whether a statistics s̃ leads to a significant 
rejection of H0, the rejection domain is actually the domain that incurs for disturbance 
from false alarms. The p value indicates the probability that these false alarms disturb 
or confuse our judgement on s̃, based on which we can re-judge whether this rejection 
of H0 is significant. In the studies of genome-wide sequencing and expression, what we 
encounter are actually tests implemented in such a manner. In this paper, we also adopt 
this manner.

Extended to multivariate tests, the Hotelling test, Wald test, and Score test are all fea-
tured by two key points. The first is computing a scalar statistics s in a quadratic form as 
follows:

where s is computed from samples in the data (D)-space, and �s is the covariance matrix 
of s. The second is evaluating whether s falls in the rejection domain based on a probabil-
istic model (e.g. a F-distribution) on the axis of s, as illustrated in Fig. 2b. The probability 
of s falling in the rejection domain (red coloured) represents the false alarm probability 
(i.e. the p value ) of rejecting H0 while H0 actually holds. In fact, the existing multivariate 
tests are mostly implemented in such a manner because it facilitates to evaluate the p 
value with help of probability distribution of a scalar statistics s.

Also, we may understand the Hotelling test, Wald test, and Score test from a perspec-
tive of vectorial statistics in a multi-dimensional S-space (Xu 2015).

For a two sample test illustrated in Fig. 1a, we consider the following vector

for testing Eq. (1) with θ = s, where ĉ1, ĉ0 are the sample means of the case samples and 
the control samples, respectively.

For a regression coefficient test illustrated in Fig. 1(b), we consider the vector

for testing Eq. (1) with θ = s, where β is a vector consisting of regression coefficients, 
and β , ĉ are estimated by the maximum likelihood principle.

In both the above cases, the vector s has a multivariate Gaussian distribution

where �s is the covariance matrix of s, and G(x|µ,�) denotes a Gaussian distribution 
with a mean vector µ and a covariance matrix �.

For testing Eq. (1) with θ = s, s locates around the origin under H0 and the acceptance 
domain is an ellipse (grey coloured) centred at the origin, as illustrated in Fig. 2c, while 
the rejection domain is the entire space outside of the ellipse, corresponding to the red 
coloured range in Fig. 2b. The probability of the scalar s falling in the rejection range (red 
coloured) in Fig. 2b is actually equivalent to the probability of the vector falling in rejec-
tion domain in Fig. 2c. In other words, what we observed here is actually a degenerated 
scenario of making multivariate tests in a multi-dimensional S-space, suffering from at 
least the following two limitations:

(3)s = s
T�−1

s s,

(4)s = ĉ1 − ĉ0,

(5)s = β ,

(6)p(s) = G(s|0,�s),
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• • H0 by Eq. (1) means that all the dimensions of s are zero and we reject H0 as long as 
at least one of these dimensions is rejected to be zero. In other words, differentiation 
is considered in a lumped sense without considering the roles of different dimensions 
and their combinations, as illustrated in Fig. 3.

• • Rejection is made according to how far s is away from the origin (possibly weighted 
by the orientation of s, e.g. see Eq. (3)), but without taking the direction of s in con-
sideration. In many applications, direction does take its role. In GWAS study, multi-
ple SNPs’ joint effect is reflected in the direction of vectorial statistics, as addressed 
in Ref. (Bansal et al. 2010) and particularly in its Figure 2.

In the next three subsections, the first limitation will be tackled by considering vari-
ous situations featured by differentiations associated with different dimensions and their 
combinations. Then, the second limitation is further tackled in the subsequent subsec-
tion, featured by directional tests.

Lattice taxonomy of tests with different dimensions of rejection

Taking the two-dimensional S-space illustrated in Fig. 3 as an example, we observe that 
Eq. (1) with θ = s = [s(1), s(2)]T becomes

The acceptance domain should be an area near the origin as illustrated in Fig. 3a. Also, 
the area has a rectangular shape if two dimensions are independent.

As illustrated in Fig. 3a, the rejection domain considered in the existing studies is the 
complement of the acceptance domain to the entire two-dimensional S-space, lumping 
up three rejection domains illustrated in Fig. 3b–d. Covering the largest area, it repre-
sents the rejection of H0 via either ¬(s(1) = 0) or ¬(s(2) = 0) in the weakest collegiality. 
On the other hand, the collegiality that s falls in the rejection domain shown in Fig. 3d is 

(7)H0 : s(1) = 0 & s(2) = 0.

Fig. 3  One H0 test in four different rejections. a The existing method considers a rejection in the weakest 
collegiality. b One dimension of rejection that considers ¬(s(2) = 0), where ¬(s = 0) denotes ‘the rejection 
of s = 0’. c The other dimension of rejection that considers ¬(s(1) = 0). d Two dimensions of rejection that 
considers ¬(s(1) = 0) & ¬(s(2) = 0) jointly, i.e. a rejection in the strongest collegiality
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strongest, requiring both ¬(s(1) = 0) and ¬(s(2) = 0), which is suitable for the cases that 
we make a rejection in one most conservative way.

It is interesting to further consider the false alarm probability (i.e. the p value) of 
rejecting H0 upon observing that s comes under H0 but falls in the rejection domain 
in each of the four situations. With pa, pb, pc, pd denoting the p values for the cases in 
Fig. 3a–d, respectively, we have

We have pd ≤ pb from P[¬(s(1) = 0)&¬(s(2) = 0)|H0] = P[¬(s(1) = 0)|H0]

P[¬(s(2) = 0)|¬(s(1) = 0),H0] and P[¬(s(2) = 0)|¬(s(1) = 0),H0] ≤ 1. Similarly, we also 
get pd ≤ pc. Moreover, it follows from pa = pb + pc − pd we have pb ≤ pa for pc ≤ pd 
and pc ≤ pa for pb ≤ pd.

In the three-dimensional S-space not only we have 
¬(s(1) = 0) or ¬(s(2) = 0) or ¬(s(3) = 0) in the weakest collegiality and 
¬(s(1) = 0)&¬(s(2) = 0)&¬(s(3) = 0) in the strongest collegiality but also we have

• • Four choices of [¬(s(1) = 0)&¬(s(2) = 0)] or ¬(s(3) = 0), ¬(s(1) = 0) or [¬(s(2) = 0)

&¬(s(3) = 0)], [¬(s(1) = 0) or (¬(s(2) = 0)]&¬(s(3) = 0), and ¬(s(1) = 0)&

[¬(s(2) = 0) or ¬(s(3) = 0)];
• • Three choices of ¬(s(1) = 0) or ¬(s2) = 0), ¬(s(2) = 0) or ¬(s(3) = 0), and 
¬(s(1) = 0) or ¬(s3) = 0);

• • Three choices of ¬(s(1) = 0)&¬(s2) = 0), ¬(s(2) = 0)&¬(s(3) = 0), and ¬(s(1) = 0)&

¬(s3) = 0);
• • Three choices of ¬(s(1) = 0), ¬(s(2) = 0), and ¬(s(3) = 0).

Generally, in the n-dimensional space of vectorial statistics, testing H0 by Eq. (1) 
involves testing various types of rejections featured by subsets of n different dimensions 
and their & and or connected combinations. Although an exhaustive search of all the 
possible types of rejections will be very tedious, we may still make a rather systematical 
investigation that organises major types of rejections in a partial order structure, namely 
two cascaded taxonomies as illustrated in Fig. 4a.

In such a way, a multivariate test is not just a single test as usually considered in the 
existing studies. Examining whether H0 breaks in a lumping way is just one extreme 
(i.e. the bottom case) that puts the most loose requirement on making a rejection of 
H0, featured by a rejection with the biggest p value and weakest collegiality. Actually, 
multivariate testing consists of tests in different levels of collegiality and different types, 
examining a total number of 2

∑n
i=2(

n
i ) different combinations of these dimensions that 

may cause a significant rejection of H0. The collegiality enhances from the bottom up 
towards the middle level that considers each of n different dimensions individually. From 
the middle level up, the collegiality further enhances level by level, until the top that 

(8)

pa = pb + pc − pd ,

pd ≤ pb, pd ≤ pc, pb ≤ pa, pc ≤ pa,

pa = P[¬(s(1) = 0) or ¬(s(2) = 0)|H0], pb = P[¬(s(1) = 0)|H0],

pc = P[¬(s(2) = 0)|H0], pd = P[¬(s(1) = 0) &¬(s(2) = 0)|H0].
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represents another extreme featured by the smallest p value for a rejection in the strong-
est collegiality.

Such a scenario may be intuitively understood from the problem of identifying a sick-
ness of a bio-body or system with a number of intrinsic factors. The normality of the 
body requires that every factor runs normally, which corresponds to Eq. (1). The body 
falls ill if either one or more of these factors become abnormal, which corresponds to 
the bottom case illustrated in Fig. 4a. A wrong diagnosis of one factor’s normality may 
lead to a wrong diagnosis that the body gets sick, that is, the chance of a false alarm is 
high. The other extreme is the top case illustrated in Fig. 4a, corresponding to that all 
the intrinsic factors jointly become abnormal. We get a wrong diagnosis that the body 
falls in this specific type of sick, only when the diagnosis of every factor’s abnormality is 
wrong, that is, the chance of a false alarm is low. Moreover, there could be various types 
of sickness to be identified, associated with different combinations of abnormal factors 
and with different chances of false alarming.

Even compactly, we may fold the two cascaded taxonomies along the central horizon-
tal line in Fig. 4a such that two layers are arranged as illustrated in Fig. 4b. At the j-th 
level, each combination is indexed by a j-tuple as follows:

and a set �j consists of of (nj ) different j-tuples for a given j, where each ω ∈ �j is associ-
ated with the following two paired rejections:

Accordingly, we have the false alarm probabilities (i.e. the p values):

which act as a pair of indicators for examining the role of the combination 
s(i1), s(i2), · · · , s(ij) in a significant rejection of H0 by Eq. (1), where pωj  indicates whether 
a significant differentiation is associated with one of the j dimensions individually, i.e. 

(9)ω = {i1, i2, · · · , ij}, i.e. there are j indices picked out of {1, 2, · · · , n}

(10)
On the 1st layer : Rω = ¬(s(i1) = 0) & ¬(s(i2) = 0) & · · ·& ¬(s(ij) = 0),

On the 2nd layer : R
ω
= ¬(s(i1) = 0) or ¬(s(i2) = 0) or · · · or ¬(s(ij) = 0).

(11)

pω
j
< pωj ,

pωj = P[R
ω
|H0] = P[¬(s(i1) = 0) or ¬(s(i2) = 0) or · · · or ¬(s(ij) = 0)|H0],

pω
j
= P[Rω|H0] = P[¬(s(i1) = 0)&¬(s(i2) = 0)& · · ·&¬(s(ij) = 0)|H0],

(See figure on next page.) 
Fig. 4  Tests with different dimensions of rejection in two taxonomies. a Two cascaded taxonomies of all 
the possible combinations of three dimensions. The bottom three levels belong to the taxonomy of those 
combinations resulted from the operator OR, while the top three levels belong to the taxonomy of those com-
binations resulted from the operator &, i.e. AND. The bottom is the one considered by the existing method, 
featured by a rejection of the weakest collegiality. The collegiality gradually enhances from one level up to the 
next level, reaching the top featured by a rejection of the strongest collegiality. b Folding Figure (a) along the 
central horizontal line into two layers, one rejection with a strong collegiality featured by & on the 1st layer is 
paired with its counterpart rejection with a weak collegiality featured by OR on the 2nd layer. c The outcome 
of all the tests organised in this taxonomy. Listed on the right side of each combination are the resulted pω

j
 

and pωj . As to be further explained in Fig. 6a, each of pω
j

 and pωj  is evidenced by two estimating values that are 
obtained with and without considering some higher order dependence among different dimensions. Listed in 
the left-most column are p

j
, pj, i.e. the minimum values of each level given by Eq. (12)
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indicating whether there is a simple or uni-factor significant differentiation; while  pω
j

 
indicates whether a significant differentiation is associated with a joint effect of 
the j dimensions, i.e. indicating whether there is a deep or multi-factor significant 
differentiation.

Moreover, we may get the following pair of the p values:

where ω∗
j  is the most distinctive combination and p

j
 indicates how distinctive a com-

bination on the j-th level could be in the best sense. This level may not be distinctive 
enough if p

j
 is not small enough. On the other hand, there could be more than one com-

binations to be identified as distinctive enough, especially when pj is very small.
The gap pj − p

j
 provides an information on a possible variety of significant differen-

tiation on this level. The collegiality of rejection increases from the bottom up as indi-
cated by the blue arrow on the 1st layer but reduces as indicated by the red arrow on the 
2nd layer. Thus, p

j
 decreases, pj increases from the bottom up, and thus the gap pj − p

j
 

increases as j increases.
Illustrated in Fig. 4c is the outcome of all the tests organised in the taxonomy, from 

which we get a roadmap about how each dimension or a combination of dimensions 
contributes to a significant rejection of the null hypothesis. Comparing pω

j−1
− pω

j
 and 

pωj−1 − pωj , as well as comparing the p values between two consecutive levels, we may 
understand the incremental role taken by each dimension.

However, what addressed above is still conceptual. In addition to the second limitation 
addressed at the end of the previous subsection, there are three coupled problems to be 
solved, listed as follows:

Problem 1	 How to effectively compute pω
j
, pωj  in Eq. (12) ?

Problem 2	� It is usually infeasible to enumerate all the 
∑n

i=2(
n
i ) different combina-

tions. How to effectively make such enumeration ?
Problem 3	� There is dependence and redundancy among dimensions of s, which 

affects seriously the above two problems. How to remove the depend-
ence and redundancy and to select appropriate number of dimensions ?

Testing implementation: independence case and latent independence 

The above problems become easier to handle when dimensions of s are mutually inde-
pendent, i.e. we have

In such a case, the acceptance domain will be a rectangular or hyper-cubic domain as 
illustrated in Fig. 3 and rejection can be made dimension by dimension independently. 
Thus, pω

j
, pωj  in Eq. (12) can be computed as follows:

(12)p
j
= pω

∗

j
, pj = pω

∗

j , ω∗ = arg min
ω∈�j

pω
j
,

(13)p(s) =
∏

i

p(s(i)).
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from which Problem 1 is simply solved, where Ŵ1(s̃
(i)) is a univariate rejection domain 

that has either one tail or two tails as follows:

For Problem 2, we may sort p{i}
1

= P[¬(s(i) = 0)|H0], i = 1, 2, . . . , n into an ascending 
order and simply get the best combination of the j-th level by picking the first j ones to 
compute Eq. (12), that is, we have

That is, the left-most column on Fig.  4c can be easily obtained. In many applications, 
it is unnecessary to find out all the distinctive combinations. Instead, getting the best 
combination of each level is already enough. Moreover, we may also obtain pω

j
 by Eq. 

(14) whenever it needs to examine a particular combination ω = {i1, i2, . . . , ij}. Even if 
we need to find out all the distinctive combinations, this ascending order of p{i}

1
 also pro-

vides some hints to get an effective search.
Due to the assumption by Eq. (13) and the ascending order of p{i}

1
, Problem 3 is sim-

plified into how to select an appropriate number k∗ of dimensions. In the idealistic case 
that some s(i) can be regarded as “do-not-care” featured by p{i}

1
= P[¬(s(i) = 0)|H0] = 1, 

it follows from Eq. (14) that we observe that

by which we can determine one appropriate k∗. However, when statistics is computed 
from a small size of samples, p{i}

1
 will be a small unknown number 1 > δ(i) > 0 even 

when s(i) is regarded as “do-not-care”, which leads to p
1
> p

2
> · · · > p

n
. Thus, it is dif-

ficult to determine k∗ by Eq. (17).
One simplest way to detect and discard those “do-not-care” dimensions is checking

where di is a filtering threshold determined after a statistical analysis.

(14)

pω
I ,j

= P[Rω|H0] = P[¬(s(i1) = 0)&¬(s(i2) = 0)& · · ·&¬(s(ij) = 0)|H0]

= P[¬(s(i1) = 0)|H0]P(¬(s
(i2) = 0)|H0] . . .P(¬(s

(ij) = 0)|H0]

= p{i1}
1

p{i2}
1

. . . p
{ij}

1 ,

pωI ,j = P[R
ω
|H0] = P[¬(s(i1) = 0) or ¬(s(i2) = 0) or · · · or ¬(s(ij) = 0)|H0]

=
∑

i

p{i}
1

−
∑

i �=j

p{i}
1
p{j}
1

+ · · · + (−1)j−1
∏

i

p{i}
1
,

p{i}
1

= P[¬(s(i) = 0)|H0] = P[s(i) ∈ Ŵ1(s̃
(i))|H0],

(15)
One tail : Ŵ1(s̃

(i)) = {s(i) : (s(i) − s̃(i))sign(s̃(i)) > 0},

Two tail : Ŵ1(s̃
(i)) = {s(i) : s(i)sign(s(i))− s̃(i)sign(s̃(i)) > 0}.

(16)

p{1}
1

≤ p{2}
1

≤ . . . ≤ p{n}
1

,

p
j
= p{1,2,...,j}

j
= p{1}

1
p{2}
1

. . . p{j}
1
, ω = {1, 2, . . . , j},

pj = p
{1,2,...,j}
j , given by Eq. (14).

(17)p
1
> p

2
> · · · > p

k∗
= · · · = p

n
,

(18)p{i}
1

= P[¬(s(i) = 0)|H0] ≥ di,
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However, the above solution is too rough. Not only it is not easy to determine di, but 
also it does not consider the joint effect of different dimensions. Returning to the think-
ing line of Eq. (17), we seek to correct each p

j
 by a normalisation term, see Eqn. (93) in 

Ref. (Xu 2015a).
Given a set of samples, a new set π of samples is obtained by permutation, and there 

is a set � of different choices of π. Similar to getting p
j
 by Eq. (17) on the original set of 

samples, we get pπ
j
 on the samples of π and then make the following p value estimated in 

the probability space (shortly pp value)

which represents the probability that the false alarm rate on randomly permuted sam-
ples is smaller than the one on the original samples, i.e. the probability that the rejection 
associated with pj is really a false alarm.

The above mentioned unknown δ(i) for some dimension of “do-not-care” may be 
approximately regarded as unchanged over different permutations. Hence, its effect to 
both the denominator and the numerator will be cancelled out by Eq. (19), and we get 
closer to Eq. (17) after pj is replaced by ppj.

Let J (k) = ln ppk, we may find an appropriate k∗ of distinctive dimensions by

In a summary, the outcome of tests is simply the best first path (red coloured) of the 
length k∗, instead of traversing all the tests on the taxonomy illustrated in Fig. 4c. This 
path provides the k∗ most distinctive dimensions and the order of their importances. 
From the bottom up, if a subpath p

j
 of the length j corresponds to a significant rejection 

of H0, any extensions of this subpath also give more significant rejections of H0.
One essential problem is that the assumption by Eq. (13) is difficult to be satisfied and 

thus the resulted pω
j

 by Eq. (14) is usually too optimistic. Instead, we may further con-
sider the latent independence as illustrated in Fig. 5a. That is, we observe a latent coor-
dinate wherein components are mutual independent subject to an additive noise e that is 
independent of su and typically Gaussian with a spherical covariance matrix. In the new 
coordinate, we can get not only the effect of noise e in consideration but also Eq. (13) 
satisfied at least conceptually. Implementation may just follow those addressed between 
Eqs. (13) and (20), simply with each appearance of s replaced by su.

When each component of su comes from a non-Gaussian univariate, the latent model 
is called non-Gaussian factor analysis (NFA) (Xu 2003, 2009; Tu and Xu 2014) and the 
mapping from s to su is featured by a distribution with a non-linear regression as illus-
trated in Fig. 5c. When each component of su is a Gaussian univariate, the latent model 
becomes the classical factor analysis (FA) and the mapping from s to su is a distribu-
tion with a linear regression as illustrated in Fig.  5b. Particularly, a FA model may be 
called either FA-b with an additional constraint AAT = I or FA-a for a conventional 
setting. For the maximum likelihood learning, FA-a and FA-b are equivalent. However, 

(19)ppj = P[pπj < pj|H0] =

∑

π∈�Ŵ
pπj

∑

π∈� pπj
, �Ŵ = {π : pπj < pj , ∀π ∈ �},

(20)k∗ = arg min
k

J (k).
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FA-b becomes more favourable for determining m. Readers are referred to Sect.2.2 in Xu 
(2011) and Tu and Xu (2011) for further studies on FA-b versus FA-a.

In implementation, we need to determine not only A, σ 2, and the parameters (if any) 
in each univariate distribution q(s(i)u ), but also the distribution p(su|s) and the number 
m, which is computationally difficult. The BYY harmony learning provides a tool for this 
purpose, and readers are referred to Xu (2015b) for a recent summary, together with 
Algorithm 4 for FA, Algorithms 6 and 7 for binary FA, and Algorithm 8 for non-Gauss-
ian FA.

Approximately, we may consider to get only the second-order independence by a lin-
ear orthogonal project s → su as follows

where �s is the covariance matrix of s, and u1, . . . ,um are its eigenvectors that corre-
spond to the non-zero eigenvalues �j , j = 1, . . . ,m. The resulted elements s(1)u , . . . , s

(m)
u  

become mutually independent in a sense of the second-order statistics, i.e. its covariance 
matrix is a diagonal matrix �.

Generally, we may estimate �s from a set {s̃π } (including s̃), with each s̃π obtained by a 
set of samples that comes from a permutation π of the original samples sets. Specifically, 
we let �s = �π with �π given by Eqn. (69) in Ref. Xu (2015a).

Also, we may get �s by the Fisher information matrix (i.e. Eqn. (6) in Ref. Xu 2015a) for 
a regression coefficient test. For a two sample test, we may use � in Eq. (2) as �s under 
the assumption that not only samples are i.i.d. but also case population and control pop-
ulation are uncorrelated.

As illustrated in Fig. 6a, b, the Cartesian coordinate is rotated into the one spanned by 
the eigenvectors uj , j = 1, . . . ,m. After the rotation, the acceptance domain is an ellipse 
and further becomes a sphere after the normalisation by �−0.5. Approximately, we may 
implement tests in the new coordinate following those addressed from Eqs.(13) to (19), 
simply with each appearance of s replaced by su.

Moreover, we select one appropriate number k∗ by Eq. (20). Alternatively, we may also 
compare the use of J (k) = ln ppk with a model selection criterion, e.g. Eqn. (29) in Xu 
(2011), given as follows:

(21)
su = UT

s, with U = [u1, . . . ,um], su = [s(1)u , . . . , s(m)
u ]

T
,

�sU = U�, � = diag[�1, . . . , �m],

Fig. 5  The linear model for latent independence. a s comes from a number m of independent intrinsic fac-
tors of su via a linear transformation plus an additive noise e. b intrinsic factors are Gaussian. c intrinsic factors 
are non-Gaussian
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As illustrated in Fig. 6b, the p value pωI ,j by Eq. (14) corresponds to the rejection domain 
that covers everywhere outside of the blue coloured acceptance domain and thus serves 
as a highest bound in a pessimistic sense. Similarly, the p value pω

I ,j
 by Eq. (14) corre-

sponds to the rejection domain illustrated in Fig. 6b by the orange coloured box and thus 
serves as a lowest bound in an optimistic sense. pωI ,j , p

ω
I ,j

 work well only when Eq. (13) 
is satisfied, which unfortunately does not hold usually. In the sequel, we further add in 
p¬e,j , ph,j to partially tackle this problem.

Higher order independence and property‑oriented test

With help of the second-order independence by Eq. (21), we get a rejection domain that 
covers everywhere outside of the ellipse illustrated in Fig. 6b. Its difference from the blue 
coloured box is illustrated by the grey area that reflects the influence of higher order 
dependence. Keeping this influence may not only simplify the computation of pωI ,j by Eq. 
(14) but also enhance reliability because the problem of removing higher order depend-
ence becomes more difficult especially based on merely a small size of samples.

Thus, we simply consider the elliptic acceptance domain illustrated in Fig. 6b by the 
following statistics:

which has a univariate distribution (e.g. approximately an F-distribution) and is actually 
a simplified and truncated version of Eq. (3) that takes a key role in the Hotelling test, 
Wald test, and Score test.

Considering the ellipse 1 =
∑j

ℓ=1
s
(iℓ) 2
u

tω¬e,iℓ
�iℓ

 that passes through s̃u we get the correspond-
ing value of tj as follows

(22)J (k) =

k
∑

j=1

ln (�j − σ 2)+m ln σ 2 + k ln (2πe), σ 2 =
1

m− k

m
∑

j=k+1

�j .

(23)

tω¬e,j =

j
∑

ℓ=1

s
(iℓ) 2
u

�iℓ

= s
T
u�

−1
j su, for ω = {i1, i2, . . . , ij},

�j = diag[�i1 , · · · , �ij ], su = [s(i1)u , . . . , s
(ij)
u ]T ,

(24)t̃ω¬e,j =

j
∑

ℓ=1

s̃
(iℓ) 2
u

�iℓ

,

Fig. 6  Getting the second-order independence. a The coordinate system is rotated to the one spanned by 
the eigenvectors. A rejection domain is specified by a combination of these eigenvectors. b In the new coor-
dinate, we approximately regard that Eq. (13) is satisfied. c Some examples of the boundary-based rejection 
domains
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which is featured by an elliptic equation tω¬e,j = t̃ω¬e,j with its inner side defining an ellip-
tic acceptance domain as illustrated in Fig. 6b and its outer side defining the following 
rejection domain:

which is an example of the following family of rejection domains

featured by a boundary equation B(su|s̃u) = 0. Its positive side B(su|s̃u) > 0 defines the 
rejection domain, while its negative side defines the acceptance domain.

It follows from Eq. (25) that we get a lower bound of pωI ,j as follows

On the other hand, the rejection domain that corresponds pω
I ,j

 by Eq. (14) differs from 
Ŵω
¬e,j(s̃u) in the green area that features higher order independence. To enhance the relia-

bility of pω
I ,j

, we prefer to ignore some higher order independence since it is unreliable to 
estimate, though we still need to consider some higher order independence to improve 
the testing power.

A trade-off solution is considering a rejection domain given by a half-space illustrated 
in Fig. 6b in one of the following Choice (a) and Choice (b):

which comes from a blue coloured linear boundary that passes through s̃u and covers 
merely a part of green area while ignoring those of even higher order independence. 
When S is given by Case (1), we observe that Choice (a) and Choice (b) here are actually 
Choice (b) and Choice (c) addressed by Eqn. (70) and Figure 5 in Ref. Xu (2015a).

It follows from Eq. (28) that we get the following upper bound of pωI ,j:

Together with Eq. (27), we get the following quad

as the values of each quad ∗ ∗ ∗∗ listed with each combination in Fig. 4c.
In addition to turning a multivariate test into multi-levels of tests in a taxonomy illus-

trated in Fig. 4, the above quad by Eq. (30) alone represents a further development of 
multivariate test already. The first two pωI ,j , p

ω
e,j represent a conventional practice of mak-

ing a multivariate test on a vectorial statistics s of the mutual independence or loosely 

(25)Ŵω
¬e,j(s̃u) = Ŵ(Bs̃u

(su))Bs̃u (s)=tω¬e,j−t̃ω¬e,j
,

(26)Ŵ(Bs̃u
(su)) = {su : B(su|s̃u) > 0},

(27)pω¬e,j = P[su ∈ Ŵω
¬e,j(s̃u)|H0] < pωI ,j .

(28)

Ŵω
h,j(s̃u) = Ŵ(Bs̃u

(su)) with Bs̃u
(s) =

→

βTS−0.5
j (su − s̃u),

→
β =

{

S−0.5
j s̃u, Choice (a) ,

sign(S−0.5
j su), Choice (b) ,

Sj =

{

I , Case (1) ,
�j , Case (2) ,

sign(x) = [sign(x(1)), . . . , sign(x(j))]T , sign(ξ) =

{

1, if ξ > 0,
−1, if ξ < 0.

(29)pω
h,j

= P[su ∈ Ŵω
h,j(s̃u)] > pω

I ,j
.

(30)pωI ,j > pω¬e,j > pω
h,j

> pω
I ,j
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the second-order independence cross the components of s. The other two pω
h,j
, pω

I ,j
 rep-

resent new developments. It follows from Eq. (14) that pω
I ,j

 is featured by a probabilistic 
product of multiple univariate one-tailed or two-tailed tests for a vectorial statistics s of 
mutual independence, while pω

h,j
 takes certain high order dependence in consideration.

All the above and previously addressed tests can be regarded as examples of prop-
erty-oriented tests. Recalling the univariate test introduced in Fig. 2b, one key issue is 
estimating the probability that the false alarms disturb the judgement on a given scalar 
statistics s̃ according to a property owned by the statistics, which can be further general-
ised into the property sharing condition given in Table 1.

For a scalar statistics s̃, there is only one property s ≥ s̃ to consider, as illustrated 
by the red coloured rejection range in Fig. 2b. However, for vectorial statistics s there 
are various choices to be considered. First, we may consider the properties of s either 
directly in its own Cartesian coordinate or one of subspaces spanned by different com-
binations of its eigenvectors u1, . . . ,um given in Eq. (21), with some dependence and 
redundancy removed, as well as some disturbing noises discarded. Second, we may con-
sider various properties featured by different types of combinations of the components 
su = [s

(1)
u , . . . , s

(m)
u ]T.

Summarised below are four types introduced previously:
Basic property  a property owned by each scalar component s(i) = 0, i ∈ {1, 2, . . . , n} 

individually, i.e. the bottom level illustrated in Fig. 4.
Logical combination  a property obtained by combining several basic properties via 

logical connections & and or, i.e. other levels illustrated in Fig. 4b.
Linear boundary equation a property with its corresponding rejection domain given 

by Eq. (26) and featured with a linear equation Bs̃u
(su) = 0, e.g. a half-space illustrated 

in Fig. 6b and defined by one linear equation in Eq. (28). Actually, it includes each basic 
property above as its degenerated case.

Quadratic boundary equation a property with the rejection domain given by Eq. (26) 
and featured by a quadratic equation Bs̃u

(su) = 0, e.g. the domain outside of the ellipse 
illustrated in Fig. 6b and defined by Eq. (25 ) or Eq. (3).

There are many other properties to be considered too. The last two above can be fur-
ther extended by considering Bs̃u

(su) = 0 in a higher order equation. Beyond Eq. (25), 
it is also possible to use an even general mathematical model Ŵ(s̃) to express rejection 
domain, e.g. the two-branching curved boundary illustrated in Fig. 6c.

Naturally, we come to a question, is there any necessary condition that such a rejection 
domain should satisfy ?

If an alarm is able to disturb the judgement on s̃, one usually expects that enlarging the 
magnitude of this alarm should make this disturbance more stronger, which leads to the 

Table 1  A theory of property-oriented rejection-based test

Key point Description

Property sharing condition A necessary condition for false alarms to disturb the judgment on a given statistics 
is sharing with the statistics’ property that we consider

Alarm scale-up nature If an alarm vector S−0.5(s− s̃) falls within a rejection domain, γ S−0.5(s− s̃) will also 
fall within the rejection domain for any γ > 1

Least complexity principle A rejection domain is modelled by a smallest number of parameters that can be 
well determined from given samples
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scale-up nature given in Table 1, based on which we may exclude many bad choices of 
rejection domain.

However, it is still not enough yet to fix a reasonable rejection domain. On one hand, 
the p value reduces as the rejection domain becomes smaller, which seemly leads us to 
choose a rejection domain as small as we want. On the other hand, in order to specify 
a rejection domain, what we can rely on are merely the known s̃u and �1, . . . , �m, which 
have already been used in Eqs. (25) and (28) for defining a linear or quadratic equation 
Bs̃u

(su) = 0. For a complicated rejection domain, e.g. the green coloured one shown in 
Fig. 6c, there are more unknowns to be specified. We need to either let an enough large 
part of them becoming known or get some priories that enable to fix those unknowns. 
In other words, we encounter the problems of unreliability and over-fitting, especially 
when there is a finite size of samples for us to compute Eq. (21), which thus leads to the 
least complexity principle given in Table 1.

The situation is similar to the problem of selecting an appropriate number k∗ of dimen-
sions, as addressed between Eqs. (16) and (19). Although it remains an open challenge to 
choose a rejection domain modelled by a smallest number of parameters, we are at least 
able to determine k∗ by Eq. (20), which provides another perspective to understand the 
rationale of examining pω

h,j
, pω

I ,j
 for all j ≤ k∗ in the taxonomy illustrated in Fig. 4c.

Moreover, the statistics obtained from random samples is probabilistic, and thus the 
property we consider is probabilistic too. To increase the reliability, we may use a boot-
strap method.
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Given a set of samples, we obtain s̃ and determine Ŵω
¬e,j(s̃u) by Eq. (25) and Ŵh,j(s̃u) by 

Eq. (28), Then, we get a resampling set of samples on which we obtain s̃r and determine 
Ŵω
¬e,j(s̃

r
u) and Ŵh,j(s̃

r
u). After getting an enough large size of {s̃ru}, we obtain the following 

unions as the final choice of rejection domains

from which we get pω¬e,j by Eq. (27) and pω
h,j

 by Eq. (29).
Finally, summarised in Algorithm 1 are the main steps of implementing tests in a lat-

tice taxonomy.

Directional test, matrix‑variate test, and phenotype‑targeted test

Property-oriented multivariate tests can be divided into two categories, namely direc-
tional tests versus non-directional tests. As previously addressed in Fig. 1 and the last 
paragraph of the introduction section, the existing multivariate tests, and the ones with 
pωI ,j , p

ω
¬e,j as well, are mostly non-directional tests, which can be regarded as extensions 

of univariate two-tailed tests, featured by merely considering how far the vectorial statis-
tics is away from the origin (possibly weighted by its orientation) but without taking its 
direction in consideration.

In contrast, a directional test is featured by that its rejection domain relates to certain 
direction. Precisely, this rejection domain at least contains a non-empty set D of unit 
vectors such that γ0d0 locates outside of the rejection domain for some d0 ∈ D and a 
large enough γ0 > 0, i.e. at least the rejection domain does not contain some directions. 
Directional tests can be regarded as extensions of univariate one-tailed tests to multivar-
iate tests. In addition to the previously addressed half-space associated with pω

h,j
 (i.e. the 

one illustrated by the black line), examples shown in Fig. 6c are all directional tests. The 
one outside the ellipse and lilac coloured can be regarded as a directional counterpart of 
the bottom one in Fig. 4b, associated with the largest p value. The other side of the black 
line contains the green coloured rejection domain with its p value smaller than pω

h,j
. They 

may all be regarded as examples of the boundary-based test (BBT) (see Table 6 in Ref. 
Xu 2015a), with their rejection domains featured by quadratic, linear, and two-branching 
curved boundary, respectively. Moreover, pω

I ,j
 is featured by a probabilistic product of 

multiple univariate one-tailed tests, and its corresponding rejection domain is actually 
an orthant of the S-space along the direction of the vector sign(s̃u).

Alternatively, the directional test associated with the half-space type rejection domain 
given in Eq. (28) can be implemented from another aspect. We may obtain pω

h,j
 by a uni-

variate one-tailed test on the B-score as given in Table 2. Also, we may consider other 
two types of projection scores in that table. One is the FDA score with the projection 
direction being the normal direction of the best linear separating hyperplane as shown 
in Fig. 1. Another measure is the misclassification rate of the case–control samples by 
the linear boundary. Several machine learning methods are available for learning such a 
linear boundary, with two examples given in Table 2.

Intuitively, directional test may also be understood by an analogy to radar detection of 
an intruding fly that is approaching the borderline of a country. An alarm will sound as 
long as a fly approaches the borderline along whatever a direction, which corresponds 
to the bottom case as illustrated in Fig. 4a, e.g. outside of the ellipse domain along any 

(31)Ŵω
¬e,j(s̃u) = ∪s̃ru∈{s̃

r
u}
Ŵω
¬e,j(s̃

r
u), Ŵh,j(s̃u) = ∪s̃ru∈{s̃

r
u}
Ŵh,j(s̃

r
u),
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direction in Fig. 6a, b. A misreport from anywhere of the country’s border will trigger 
such a false alarm, that is, the chance of a false alarm is high. On the other hand, a fatal 
and urgent alarm will sound when a fly comes along a direction towards the capital of 
the country because this attack may make many fatal components of this country dis-
ordered jointly, which corresponds to the normal direction of the half-space illustrated 
by the black line in Fig. 6b. Only a misreport from this direction will trigger this type 
of alarm, that is, the chance of a false alarm is low. Moreover, there could be different 
alarms from different directions, corresponding to different directional tests.

Moreover, extensions can be made from a vector s to a matrix. As addressed in Ref. Xu 
(2015a), many tasks of big data analyses demand extending vector-based sampling units 
to sampling units in matrix format. Illustrated in Fig. 7a is a data cubic encountered in the 
case–control studies. Accordingly, we encounter matrix-variate tests in matrix-variate logis-
tic regression (see the details from Eqs. (48) to (57) in Ref. Xu 2015a) and matrix-variate dis-
criminative analysis (see the details from Eqs (33) to (43) in Ref. Xu 2015a). For the former, 
test is made on regression coefficients in two vectors, which is still a multivariate test. For the 
latter, the situation becomes quite different, and further details are addressed in the sequel.

With an n-dimensional vector s extended into an n×m matrix, Eqs. (1) and (4) are 
extended into the following matrix form

Although we may stack the columns of S into a long vector, the covariance matrix �s 
becomes an nm× nm matrix, and its estimation from a finite number of samples 
becomes not feasible. Three feasible approximate methods are suggested in Table 3. The 

(33)H0 : S = 0, with S = Ĉ1 − Ĉ0.

Table 2  Three typical projection scores

Type Description

B-score We get a projection score Bs̃u (s) by Eq. (28), namely, the projection of statistics su − s̃u 

onto a particular direction S−0.5
j

→
β . Actually, we are lead to a univariate one-tailed test on 

this projection score, which may be simply implemented by either one-tailed z-test or 
one-tailed t-test. Also, we may estimate the univariate distribution of the score, and then 
compute pω

h,j
 based on the estimated distribution

FDA score We get 
→
β  by making the Fisher discriminative analysis (FDA) on the control samples and 

the case samples, and then obtain the projection score 
→
β
T

s with s given by Eq. (4), where 

the arrow of 
→
β  points from the control to the case, as illustrated in Fig. 1b, while the 

classical FDA does not care about which direction of two choices is taken as the arrow. 
A directional test can be made by either one-tailed z-test or one-tailed t-test, using the 
statistics                                        

t→
β
=

→
β
T

s

σ
, σ 2 = α0σ

2
0 + α1σ

2
1 ,� (32)

 where σ 2
0 , σ

2
1  are the sample variances of the projections of control–case samples onto 

→
β , 

respectively, and α0,α1 are corresponding proportions

 We may also perform a non-directional test with the arrow of 
→
β  ignored, by using a two-

tailed z-test or t-test, which is suggested in Table 2(1) of Ref. Xu (2015a) as one example of 
the boundary-based two-sample test or BBT in short

Learning LDA score We may also perform either a directional test or a non-directional test as above, but with 
→
β  

obtained by 

(a)  Support vector machine (SVM) (Suykens 1999; Suykens et al. 2002), as suggested in 
Table 4(c) of Ref. Xu (2015a)

(b)  Sparse logistic regression (Shevade and Keerthi 2003; Koh et al. 2007)
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Fig. 7  A case–control study that considers matrix-variate samples. a Data matrices stacked along the x-axis 
to form a data cubic. Each element in the data cubic is a real or discrete value, called the expression at the 
corresponding coordinate. Each matrix sample consisting of rows obtained from different conditions is 
arranged along the z-axis, while each row consisting of probes or called measurements is located along the 
y-axis. b Row-wise bi-partition of the data cubic with the control representing those normal (N) conditions 
and the case representing those abnormal or trouble (T) conditions. Test is made per a probe, aiming at 
differentiation expression (DE) cross conditions (N and T), shortly called NT test. Those with the p value below 
a threshold and the fold rate of T over N bigger than a threshold are selected as a set FNT  of significant DE 
probes. On the right side, the scatter plot consists of dots locating on a vertical line, with two dots per sample 
(T in red, N in green). c Column-wise bi-partition of the data cubic with the case and control representing two 
of targeted phenotypes (e.g. cancer stages I, II, III, & IV, 3-year survival, 5-year survival, etc). Only the T layer is 
considered. Similar to b but with T, N replaced by PT1, PT2, the test aims at a set FPT  of significant DE probes of 
targeted phenotypes (PT1, PT2), shortly called PT test. d Both the T and N layers are jointly considered. We have 
two ways for getting FPT . One considers two steps, firstly getting FNT  in the same way as (b) and then getting 
FPT ⊆ FNT  in the same way as (c), featured by two lines of scatters on its right side. The second considers T and 
N jointly in a 2D sample and makes a two-variate PT test to get a set FPT  of significant DE probes cross PT1, PT2. 
The right side is a 2D scatter plot with a dot representing two dots in (b)

 Table 3  Three feasible approximate techniques for matrix-variate two-sample test

Method Description

(a) Multivariate test per probe If probes are independent, we make a multivariate test on each 
[condition, sample] matrix slice per probe. Such a multivariate test can be 
implemented by Algorithm 1 or one of the methods given in Table 2

(b) LDA-based multivariate test we make the map su(f ) = s
T
→
β  onto 

→
β  per probe f with 

→
β  obtained by either 

FDA or learning-based methods in Table 2, and make a multivariate test on 
[su(f1), · · · , su(fg)]

T  to consider multiple probes f1, . . . , fg jointly

(c) Bilinear MDA-based test We make the matrix-variate discriminative analysis (MDA) (see Eq.(33) & Eq.(34) 

in Ref. Xu (2015a)) to obtain v,
→
β , based on which we test 

→
β = 0 by a multi-

variate test on sv = v
T
S given v fixed and test v = 0 by a multivariate test on 

s→
β
=

→
β
T

S
T  given 

→
β  fixed

 Alternatively, we may make test on the scalar statistics s
v
→
β
= v

T
S
→
β
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first applies to the cases that probes are either independent or assumed to be independ-
ent. The second is firstly mapping the vector s into one feature by su(f ) = s

T
u and then 

making multivariate test on [su(f1), . . . , su(fg )]T jointly. The third is a bilinear matrix-var-
iate two sample test.

These existing case–control studies can be roughly classified into two classes featured 
by column-wise versus row-wise bi-partitions of the data cubic, as illustrated in Fig.7b–
d, respectively. Examples of Fig. 7b can be found in most of the SNP analyses in GWAS 
and those gene expression studies under a single condition (e.g. from a tumour tissue 
only). Examples of Fig. 7c, d1 can be found in many current studies of gene expression 
with tumour versus its paired adjacent tissue. All of these existing efforts are featured by 
making univariate tests.

One widely adopted existing practice is making a NT test for getting a set FNT of signif-
icant differentiation expression (DE) probes. However, the resulted biomarkers may not 
be optimal in the sense of differentiating phenotypes, because a differentiation expres-
sion between T versus N may not well cope with the distinctions between phenotypes. 
For prognosis purpose, there are also efforts that further make a PT test in Fig. 7d(1) for 
getting FPT ⊆ FNT. Even so, the selection of FPT is merely based on either the tumour 
expression or the fold change of T over N, without a best use of information contained 
in the (T,N) pair for differentiations between phenotypes.

Proposed recently in Ref. Xu (2015a), considering both T and N jointly in a 2D vec-
tor by a two-variate PT test paves a new road for reconsidering the task. As shown in 
Fig. 7d(2), samples of PT1 and PT2 can be well separated by a line on the 2D scatter plot. 
Transforming the 2D scatter plot into a plot on vertical line, however, it becomes no 
longer possible to separate PT1 and PT2. In other words, even in the cases that we are 
unable to identify biomarkers for distinguishing PT1 versus PT2 in the existing ways as 
shown in Fig. 7b–d (1), we may still find biomarkers for distinguishing PT1 versus PT2 by 
the new method.

Discussions
Whole genome sequencing analyses

As previously addressed from Eqs. (1) to (3), multivariate tests take an important role in 
many tasks of whole genome sequencing analyses. Using the new methods proposed in 
this paper to tackle these tasks, we may expect the following features :

1.	 Disturbing influences of those “do-not-care” variants may be reduced such that 
the ability of identifying variants for significant differentiation can be considerably 
improved.

2.	 Directions of risk effect versus preventive effect with the multiple variants are taken 
in consideration.

3.	 Important samples may be identified by observing whether their critical variants 
have major contributions to significant differentiation, as addressed at the bottom of 
Algorithm 1.

4.	 Extensions of the joint multiple-variant sequencing analysis may be made not only 
to identify variants that significantly differentiate tumour versus normal but also to 
identify variants that significantly differentiate a pair of phenotypes.
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Genome‑scale expression profile of mRNA and lncRNA expression

In the existing studies on genome-scale expression profile of mRNA or/and lncRNA, 
there are many examples of the case–control study on the data cubic shown in Fig. 7d, 
with testing made in one of the ways shown in Fig. 7b, d(1). Instead, the new method 
shown in Fig. 7d(2) provides a better choice.

Summarised in Table 4 are some proposed implementations and applications.

Conclusions
Instead of understanding and making multivariate test in a single rejection, multivariate 
test actually consists of a hierarchy of numerous tests organised in a lattice taxonomy, 
with the bottom level in the lowest rejection collegiality (the largest p value) and the 
top level in the highest rejection collegiality (the smallest p value), while the ones on the 
intermediate levels represent different situations in which the null hypothesis is rejected 
and are featured by different p values. The outcomes consist of not only whether the null 
hypothesis is rejected significantly as a whole, but also those combinations of multiple 
components that are responsible for a significance of rejecting the null hypothesis, and 
those probes that contribute considerably to a significance of rejecting the null hypoth-
esis. Not only detailed implementations are presented, but also several potentials are 
addressed on possible applications to expression profile-based biomarker identification 
and exome sequencing-based joint SNV detection.
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Table 4  Two-variate TP tests : implementations and applications

Implementations Applications

1. Make the two-variate PT test by the method given 
in Table 3 (a), which provides an improvement on 
making the two-variate PT test by Hotelling test as 
suggested in Table 8(1)(a) of Ref. Xu (2015a)

(a) Identify mRNA and lncRNA biomarkers for tumour vs 
normal in expression analysis

2. Make the FDA-based PT test by Table 3 (b), especially 
one-tailed z-test or one-tailed t-test by Eq. (32), 
which is a complementary to the FDA-based PT test 
listed in Table 2(1) of Ref. Xu (2015a), where a univari-
ate two-tailed t test is made

(b) Identify mRNA and lncRNA biomarkers for 3-year & 
5-year survival in expression analysis

3. Find probes that significantly differentiate not only 
phenotypes but also abnormal vs normal, as well as 
their common part

(c) Identify mRNA and lncRNA biomarkers for cancer 
grades I, II, III, & IV in expression analysis

(d) For each of the above cases (a)(b)(c), we use the 
FDA projection su(f ) = s

T
→
β  to replace the original 

expression value for painting heatmaps and making 
the corresponding clustering analysis
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