
Causal discovery and inference: 
concepts and recent methodological advances
Peter Spirtes1 and Kun Zhang1,2* 

Background
The goal of many sciences is to understand the mechanisms by which variables came to 
take on the values they have (i.e., to find a generative model), and to predict what the 
values of those variables would be if the naturally occurring mechanisms in a popula-
tion1 were subject to outside manipulations. For example, a randomized experiment is 
one kind of manipulation, which substitutes the outcome of a randomizing device to set 
the value of a variable, such as whether or not a particular diet is used, instead of the 
naturally occurring mechanism that determines diet. In nonexperimental settings, biol-
ogists gather data about the gene activation levels in normally operating systems, and 
seek to understand which genes affect the activation levels of which other genes and seek 

1  Here, the “population” is simply a collection of instantiations of a set of random variables. For example, it could consist 
of a set of satellite readings and rainfall rates in different locations at a given time, or the readings of a single satellite and 
rainfall rate over time, or a combination of these.
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to predict what the effects of intervening to turn some genes on or off would be; epide-
miologists gather data about dietary habits and life expectancy in the general population 
and seek to find what dietary factors affect life expectancy and to predict the effects of 
advising people to change their diets. Finding answers to questions about the mecha-
nisms by which variables come to take on values, or predicting the value of a variable 
after some other variable has been manipulated, is characteristic of causal inference. If 
only observational (nonexperimental) data are available, predicting the effects of manip-
ulations typically involves drawing samples from one density (of the unmanipulated 
population) and making inferences about the values of a variable in a population that has 
a different density (of the manipulation population).

Many of the basic problems and basic assumptions remain the same across domains. 
In addition, although there are some superficial similarities between traditional super-
vised machine learning problems and causal inference (e.g., both employ model search 
and feature selection, the kinds of models employed overlap, and some model scores can 
be used for both purposes), these similarities can mask some very important differences 
between the two kinds of problems.

History

Traditionally, there have been a number of different approaches to causal discovery. The 
gold standard of causal discovery has typically been to perform planned or randomized 
experiments  (Fisher 1970). There are obvious practical and ethical considerations that 
limit the application of randomized experiments in many instances, particularly on human 
beings. Moreover, recent data collection techniques and causal inference problems raise 
several practical difficulties regarding the number of experiments that need to be per-
formed in order to answer all of the outstanding questions (Eberhardt et al. 2005, 2006).

Manipulating and conditioning
Conditioning maps a given joint density, and a given subpopulation (typically specified 
by a set of values for random variables) into a new density. The conditional density is a 
function of the joint density over the random variables and a set of values for a set of 
random variables.2 The estimation of a conditional probability is often nontrivial because 
the number of measurements in which the variables conditioned on that take on a par-
ticular value might be small. A large part of statistics and machine learning is devoted to 
estimating conditional probabilities from realistic sample sizes under a variety of 
assumptions.

More generally, suppose the goal is to find a “good” predictor of the value of some tar-
get variable Y from the values of the observed covariates O, for a unit. We will refer to 
this as Problem 1, described more formally below. Ultimately, the prediction of the value 
of Y is performed by some prediction function Ŷn(O). One traditional measure of how 
good the predictor Ŷn(O) is in predicting Y is the mean squared prediction error (MSPE), 
which is equal to E[(Y − Ŷn(O))2], where the expected value is taken with respect to the 
density p(O,Y ) (Bickel and Doksum 2000).3

2  In order to avoid technicalities, we will assume that the set of values conditioned on do not have measure 0.
3  Other measures of prediction error, such as the absolute value of prediction error or optimizing certain decision prob-
lems, could be used but would not substantially change the general approach taken here.
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Problem 1: Sample predictive modeling

Input: i.i.d. samples from a population with density p(O, Y ), background assumptions,
and a target variable Y whose value is to be predicted.

Output: Ŷn(O), a predictor of Y from O that has a small MSPE.

In addition to predicting future values of random variables from the present and past 
values, conditional probabilities are also useful for predicting hidden values at the cur-
rent time.

Manipulated probabilities

A manipulated density results from taking action on a given population—it may or may 
not be equal to any observational conditional density, depending upon what the causal 
relations between variables are. Manipulated probability densities are the appropriate 
probability densities to use when making predictions about the effects of taking actions 
(“manipulating” or “doing”) on a given population (e.g., assigning satellite readings), 
rather than observing (“seeing”) the values of given variables. A manipulation M speci-
fies a new conditional probability density for some set of variables. If X and O are sets of 
variables with density p(X|O), a manipulation M changes the density to some new den-
sity p′(X|O). Manipulated probabilities are the probabilities that are implicitly used in 
decision theory, where the different actions under consideration are manipulations.4 We 
designate the density of a set of variables V after a manipulation M as p(V||M). Each 
manipulation is assumed to be an ideal manipulation in the following senses:

1.	 Each manipulation succeeds, i.e., if the manipulation is designated as setting the den-
sity to p′(X|O), then the post-manipulation density is p′(X|O).

2.	 There is no fat hand, i.e., each manipulation directly affects only the variables manip-
ulated.

A probability model specifies a density over a set of random variables O. A causal 
model specifies a set of densities over a set of random variables O, one for each possible 
manipulation M of the random variables in O, including the null manipulation. Hence, a 
probability model is a member of a causal model.

Given a set of variables V, the direct causal relations among the variables can be repre-
sented by a directed graph, where the variables in V are the vertices, and there is an edge 
from A to B if A is a direct cause of B relative to V.

We will refer to the problem of estimating manipulated densities given a sample from 
a marginal unmanipulated density, a (possibly empty) set of samples from manipulated 
densities, and background assumptions, as Problem 2; it is stated more formally below. In 
contrast to conditional probabilities, which can be estimated from samples from a popu-
lation, typically the gold standard for estimating manipulated densities is an experiment, 

4  Here, p′ is not a derivative of p; the prime after the p merely indicates that a new function has been introduced. The 
use of manipulated probability densities in decision theory is often not explicit. The assumption that the density of states 
of nature is independent of the actions taken (act-state independence) is one way to ensure that the manipulated densi-
ties that are needed are equal to observed conditional densities that can be measured.
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often a randomized trial. However, in many cases, experiments are too expensive, too 
difficult, or not ethical to carry out. This raises the question of what can be determined 
about manipulated probability densities from samples from a population, possibly in 
combination with a limited number of randomized trials. The problem is even more dif-
ficult because the inference is made from a set of measured random variables O from 
samples that might not contain variables that are causes of multiple variables in O.

Problem 2 is usually broken into two parts: finding a set of causal models from sample 
data, some manipulations (experiments) and background assumptions, and predicting 
the effects of a manipulation given a causal model. Here, a “causal model” (Sect. 3) speci-
fies for each possible manipulation that can be performed on the population (including 
the manipulation that does nothing to a population) a post-manipulation density over a 
given set of variables.

Problem 2: Statistical causal predictive modeling

Input: i.i.d. samples from a population with density p(O, Y ), a (possibly empty) set of
i.i.d. samples from manipulated densities p(O, Y ||M1), ..., p(O, Y ||Mn), a manipulation
M , background assumptions, and a target variable Y whose post-manipulation value is
to be predicted.

Output: Ŷ (O||M), a predictor of the value of Y from O after manipulation M that has
a small MSPE.

Problem 2a: Constructing Causal Models from Sample Data

Input: i.i.d. samples from a population with density p(O), a (possibly empty) set of
i.i.d. samples from manipulated densities p(O||M1), ..., p(O||Mn), and background as-
sumptions.

Output: A set of causal models that is as small as possible, and contains an approximately
true causal model.

Problem 2b: Predicting the Effects of Manipulations from Causal Models

A set C of causal models over a set of variables O and Y , a manipulation M , and a
target variable Y .

Output: Ŷ (O||M) if one exists, and an output of “no function” otherwise.

The reason why the stated goal for the output of Problem 2a is a set of causal models, 
rather than a single causal model, is that in some cases it is not possible to reliably find a 
true causal model given the inputs. Furthermore, in contrast to predictive models, even if 
a true causal model can be inferred from a sample from the unmanipulated population, it 
generally cannot be validated on a sample from the unmanipulated population, because a 
causal model contains predictions about a manipulated population that might not actu-
ally exist. This has been a serious impediment to the improvement of algorithms for 
constructing causal models, because it makes evaluating the performance of such algo-
rithms difficult. It is possible to evaluate causal inference algorithms on simulated data, 
to employ background knowledge to check the performance of algorithms, and to con-
duct limited (due to expense, time, and ethical constraints) experiments, but these serve 
as only partial checks how algorithms perform on real data in a wide variety of domains.
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Structural equation models
The set of random variables in a structural equation model (SEM) can be divided into 
two subsets, the “error variables” or “error terms,” and the substantive variables (for 
which there is not standard terminology in the literature). The substantive variables are 
the variables of interest, but they are not necessarily all observed. Each substantive vari-
able X is a function of other substantive variables V, and a unique error term εX, i.e., 
X := f (V, εX ). We use an assignment operator, rather than an equality operator because 
the equations are interpreted causally; manipulating a variable in V can lead to a change 
in the value of X.

Each SEM is associated with a directed graph whose vertices include the substantive 
variables, and that represents both the causal structure of the model and the form of the 
structural equations. There is a directed edge from A to B (A → B) if the coefficient of 
A in the structural equation for B is nonzero. In a linear SEM, the coefficient bB,A of A in 
the structural equation for B is the structural coefficient associated with the edge A → B . 
In general, the graph of a SEM may have cycles (i.e., directed paths from a variable to 
itself ) and may explicitly include error terms with double-headed arrows between them 
to represent that the error terms are dependent (e.g., εA ↔ εB); if no such edge exists 
in the graph, the error terms are assumed to be independent. If a variable has no arrow 
directed into it, then it is exogenous; otherwise, it is endogenous. In SEM K (θ) depicted 
in Fig. 1a (where θ is the set of parameter values for K), A is exogenous and B and R are 
endogenous. If the graph has no directed cycles and no double-headed arrows, then it is 
a directed acyclic graph (DAG).

Given the independent error terms in SEM K, for each θ, SEM K entails both a set of 
conditional independence relations among the substantive variables, and that the joint 
density over the substantive variables factors according to the graph, i.e., the joint density 
can be expressed as the product of the density of each variable conditional on its parents 
in the graph. For example, p(A,B,R) = p(A)p(B|A)p(R|A) for all θ. This factorization in 

Fig. 1  a Unmanipulated causal graph K; b B Manipulated to 5; c A Manipulated to 5
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turn is equivalent to a set of conditional independence relations among the substantive 
variables (Lauritzen et al. 1990).
Ip(X,Y|Z) denotes that X is independent of Y conditional on Z in density p, i.e., 

p(X|Y,Z) = p(X|Z) for all p(X|Z) �= 0. (In cases where it does not create any ambigu-
ity, the subscript p will be dropped.) If a SEM M with parameter values θ (represented by 
M(θ)) entails that X is independent of Y conditional on Z, we write IM(θ)(X,Y|Z). If a SEM 
with fixed causal graph M entails that IM(�)(X,Y|Z) for all possible parameter values �, we 
write IM(X,Y|Z). In that case we say that M entails I(X,Y|Z). It is possible to determine 
whether IM(X,Y|Z) from the graph of M using the purely graphical criterion, “d-separa-
tion” (Pearl 1988).

A Bayesian network is a pair 〈G, p〉, where G is a DAG and a p is a probability density 
such that if X and Y are d-separated conditional on Z in G, then X and Y are independ-
ent conditional on Z in G. If the error terms in a SEM with a DAG G are jointly inde-
pendent, and p(V) is the entailed density over the substantive variables, then 〈G, p(V)〉 is 
a Bayesian network.

Representing manipulations in a SEM

Given a linear SEM, a manipulation of a variable Xi in a population can be described by 
the following kind of equation: Xi =

∑

Xj∈PA(Xi)
bi,jXj + εi, where all of the variables are 

the post-manipulation variables, PA(Xi) is a new set of causes of Xi (which are included 
in the set of noneffects of Xi in the unmanipulated population). A simple special case is 
where Xi is set to a constant c.

In a causal model such as SEM K (θ), the post-manipulation population is represented 
in the following way, as shown in Fig. 1. The result of modifying the set of structural equa-
tions in this way can lead to a density in the randomized population that is not necessarily 
the same as the density in any subpopulation of the general population. [For more details 
see Pearl (2000); Spirtes et al. (2001)]. See Fig. 1 for the examples of manipulations to SEM K.

A set S of variables is causally sufficient if every variable H that is a direct cause (rela-
tive to S ∪ {H}) of any pair of variables in S is also in S. Intuitively, a set of variables S is 
causally sufficient if no common direct causes (relative to S) have been left out of S. If 
SEM K is true, then {A,B,R} is causally sufficient, but {B,R} is not because A is a com-
mon direct cause of B and R relative to {A,B,R} but is not in {B,R}. If the observed set of 
variables is not causally sufficient, then the causal model is said to contain unobserved 
common causes, hidden common causes, or latent variables.

Assumptions
The following assumptions are often used to relate causal relations to probability 
densities.

The causal Markov assumption

Causal Markov assumption

 For causally sufficient sets of variables, all variables are independent of their noneffects 
(nondescendants in the causal graph) conditional on their direct causes (parents in the 
causal graph) (Spirtes et al. 2001).
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The causal Markov assumption is an oversimplification because it basically assumes 
that all associations between variables are due to causal relations. There are several other 
ways that associations can be produced.

First, conditioning on a common descendant can produce a conditional dependency. 
For example, if sex and intelligence are unassociated in the population, but only the most 
intelligent women attend graduate school, while men with a wider range of intelligence 
attend graduate school, then sex and intelligence will be associated in a sample consist-
ing of graduate students (i.e., sex and intelligence cause graduate school attendance, 
which has been conditioned on in the sample). See  Spirtes et  al. (1995) for a discus-
sion of selection bias. Second, logical relationships between variables can also produce 
noncausal correlations (e.g., if GDP_yearly is defined to be the sum of GDP_January, 
GDP_February, etc., GDP_yearly will be associated with these variables, but not caused 
by them). For a discussion of logical relations between variables, see Spirtes and Scheines 
(2004). Third, it does not have any way of dealing with instantaneous symmetric interac-
tions (like classical theories of gravity).

The causal faithfulness assumption

Consider SEM O in Fig. 2. Suppose we have IK (B,R|A), where SEM K is shown in Fig. 1a, 
whereas it is not the case that IO(B,R|A). However, just because O does not entail 
IO(B,R|A) for all sets of parameter values β, that does not imply that there are no β for 
which IO(β))(B,R|A). For example, if the variances of R, A, and B are all 1, for any β for 
which covO(β)(A,B) · covO(β)(A,R) = covO(β)(B,R), it follows that covO(β)(B,R|A) = 0. 
This occurs when (bB,R · bA,R + bA,B) · (bB,R · bA,B + bA,R) = bR,B. So if Ip(B,R|A) is true 
in the population, there are at least two kinds of explanation: any set of parameter values 
for SEMs K (in Fig. 1a), L, or M (in Fig. 2), on the one hand, or any parameterization of 
SEM O for which (bB,R · bA,R + bA,B) · (bB,R · bA,B + bA,R) = bR,B. There are several argu-
ments why, although O with the special parameter values is a possible explanation, in the 
absence of evidence to the contrary, K, L, or M should be the preferred explanations.

First, K, L, and M explain the independence of B and R conditional on A structurally, 
as a consequence of no direct causal connection between the variables. In contrast O 
explains the independence as a consequence of a large direct effect of B on R canceled 
exactly by the product of large direct and indirect effects of B and R on A.

Second, this cancelation is improbable (in the Bayesian sense that if a zero conditional 
covariance is not entailed, the measure of the set of free parameter values for any DAG 

Fig. 2  Alternative SEM models
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that lead to such cancelations is zero for any “smooth” prior probability density,5 such as 
the Gaussian or exponential one, over the free parameters).

Finally, K, L, and M are simpler than O. K, L, and M have fewer free parameters than O.
The assumption that a causal influence is not hidden by coincidental cancelations can 

be expressed for SEMs in the following way: A density p is faithful to the graph G of a 
SEM if and only if every conditional independence relation true in p is entailed by G.

Causal faithfulness assumption

For a causally sufficient set of variables V in a population P, the population density pP(V) 
is faithful to the causal graph over V for P (Spirtes et al. 2001).

The causal faithfulness assumption requires preferring K, L, and M to O, because 
parameter values β for which IO(β))(B,R|A) would violate the Causal Faithfulness 
Assumption. Recently, there have been a number of search algorithms that are consist-
ent, but have substituted other kinds of assumptions in place of the causal faithfulness 
assumption.

The output of a search for causal models

The following sections describe different possible alternatives that can be output by a 
reliable search algorithm.

Markov equivalence classes

A trek between A and B is either a directed path from A to B, a directed path from B to A, 
or a path between A and B that does not contain a subpath X → Y ← Z. SEMs K, L, and 
M are Markov equivalent, in the sense that their respective graphs all entail the same set 
of conditional independence relations. If K is true, any SEM with a graph that contains 
no path between A and R can be eliminated from consideration by the causal Markov 
assumption (e.g., N in Fig. 2). SEM P also violates the Causal Markov Assumption. O is 
incompatible with the population conditional independencies by the causal faithfulness 
assumption. However, neither of these assumptions implies L or M is incompatible with 
the population conditional independencies.

Since K, L, and M entail the same set of conditional independence relations, it is not 
possible to eliminate L or M as incompatible with the population conditional independ-
ence relations without either adding more assumptions or background knowledge or 
using features of the probability density that are not conditional independence relations. 
In the case of linear SEMs with Gaussian error terms (and for multinomial Bayesian 
networks), there are no other features of the density that distinguish K from L or M. 
However, as we will illustrate later, for other families of distributions, there are noncon-
ditional independence constraints that can be entailed by a graph that do distinguish K 
from L or M.

Distribution equivalence

K and L are distribution equivalent if and only if for any assignment of parameter values 
θ to K there exists an assignment of parameter values θ ′ to L that represents the same 

5  A smooth measure is absolutely continuous with Lebesgue measure.
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density, and vice versa. If all of the error terms are Gaussian with linear causal relations, 
then K and L are distribution equivalent as well as Markov equivalent. In such cases, the 
best that a reliable search algorithm can do is to return the entire Markov equivalence 
class, regardless of what features of the marginal density that it uses.

In contrast, for linear causal models with at most one error term is nonGaussian, 
SEMs K and L are Markov equivalent, but they are not distribution equivalent.

When Markov equivalence fails to entail distribution equivalence, using conditional 
independence relations alone for causal inference is still correct, but it is not as inform-
ative as theoretically possible. For example, assuming linearity, causal sufficiency, and 
nonGaussian errors  (Shimizu et  al. 2006), conditional independence tests can at best 
reliably determine the correct Markov equivalence class, while using other features 
of the sample density can be used to reliably determine a unique graph (Shimizu et al. 
2006) or find information about latent variables. For example, linear graphical models 
entail rank constraints on various submatrices of the covariance matrix, regardless of the 
particular parameter values (Sullivant et al. 2010; Spirtes 2013). These rank constraints, 
together with conditional independence tests, can be used to identify models with latent 
confounders (Kummerfeld et al. 2014).

Constraint‑based search

The number of DAGs grows super-exponentially with the number of vertices, so even 
for modest numbers of variables, it is not possible to examine each DAG to determine 
whether it is compatible with the population density given the causal Markov and faith-
fulness assumptions. The PC algorithm, given as input an oracle that returns answers 
about conditional independence in the population and optional background knowl-
edge about orientations of edges, returns a graphical object called a pattern that rep-
resents a Markov equivalence class (or if there is background knowledge a subset of a 
Markov equivalence class) on the basis of oracle queries. If the oracle always gives cor-
rect answers, and the causal Markov and causal faithfulness assumptions hold, then 
the output pattern contains the true SEM, even thought the algorithm does not check 
each DAG. In the worse case, it is exponential in the number of variables, but for sparse 
graphs, it can run on hundreds of thousands of variables  (Spirtes and Glymour 1991; 
Spirtes et al. 1993; Meek 1995).

Recently, the general-purpose Boolean Satisfiability Solver (SAT), as a constrained 
optimization technique, has been used for causal discovery in a general model 
space  (Hyttinen et al. 2013; Triantafillou and Tsamardinos 2015). Such methods make 
the use of conditional independence and dependence constraints and allow the integra-
tion of general background knowledge. They are able to discovery causal structures in 
the presence of both directed cycles (feedback loops) and latent variables from any given 
set of overlapping passive observational or experimental datasets. Since combinational 
optimization problems are essentially involved, such methods do not generally scale well 
as the number of variables increases.

Differences between classification and regression and causal inference
The following is a brief summary of some important differences between the problem of 
predicting the value of a variable in an unmanipulated population from a sample and the 
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problem of predicting the post-manipulation value of a variable from a sample from an 
unmanipulated population. In an unmanipulated population P, the predictor that mini-
mizes the MSPE is the conditional expected value.

1.	 E(Y |O) (the expected value of Y conditional on O) is a function of p(O,Y), regardless 
of what the true causal model is.6 In contrast, a manipulated expected value is a func-
tion of p(O,Y ) and a causal graph.

2.	 In order to determine whether EP(Y ||p′(O)) (the expected value of Y after a manipu-
lation to p′(O)) is a function of p(O,Y ) and background knowledge, it is necessary 
to find all of the causal models compatible with p(O,Y ) and background knowledge, 
not simply one causal model compatible with p(O,Y ) and background knowledge.

3.	 Determining which causal models are compatible with background knowledge and a 
p(O,Y ) requires making additional assumptions connecting population densities to 
causal models (e.g., causal Markov and faithfulness).

4.	 Without introducing some simplicity assumptions about causal models, for some 
common families of densities (e.g., Gaussian, multinomial), no EP(Y |O′||p′(O)) are 
functions of the population density without very strong background knowledge.

5.	 The justification for using simple statistical models is fundamentally different than 
the justification for using simple causal models. At a given sample size, the use of 
simple statistical model can be justified even if causal relations are not simple. How-
ever, the assumption that the simplest causal model compatible with p(O,Y ) and 
background knowledge is a substantive assumption about the simplicity of mecha-
nisms that exist in the world.

6.	 For many families of densities (e.g., Gaussian, multinomial), there is always a statisti-
cal model without hidden variables that contains the population density. For those 
same families of densities, a causal model that contains both the population probabil-
ity density and the post-manipulation probability densities may require the introduc-
tion of unobserved variables.

7.	 Given a population density, and the set of causal models consistent with the popula-
tion density and background knowledge, calculating the effects of a manipulation can 
be difficult because

(a)	 There may be unobserved variables (even if only a single causal model is consist-
ent with p(O,Y ) and background knowledge).

(b)	 There may be multiple causal models compatible with p(O,Y ) and background 
knowledge.

8.	 For nonexperimental data, a post-manipulation density is different from the popula-
tion density from which the sample is drawn. The post-manipulation values of the 
target variable Y are not directly measured in the sample. Hence, it is not possible to 
estimate the error in EP(Y |O′||p′(O)) by comparing it to the values in a sample from 
the p(O,Y ).

6  This ignores the problem of conditioning on sets of measure zero.
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SEMs can help in causal discovery from I.I.D. and time series data
As discussed in "Constraint-Based search" section, the constraint-based approach to 
causal discovery involves conditional independence tests, which would be a difficult task 
if the form of dependence is unknown. It has the advantage that it is generally applica-
ble, but the disadvantages are that faithfulness is a strong assumption and that it may 
require very large sample sizes to get good conditional independence tests. Furthermore, 
the solution of this approach to causal discovery is usually nonunique, and in particular, 
it does not help in determining causal direction in the two-variable case, where no con-
ditional independence relationship is available.

What information can we use to fully determine the causal structure? A fundamental 
issue is, given two variables, how to distinguish cause from effect. To do so, one needs 
to find a way to capture the asymmetry between them. Intuitively, one may think that 
the physical process that generates effect from cause is more natural or simple in some 
way than recovering the cause from effect. How can we represent this generating pro-
cess, and in which way is the causal process more natural or simple than the backward 
process?

Recently, several causal discovery approaches based on structural equation models 
(SEMs) have been proposed. A SEM represents the effect Y as a function of the direct 
causes X and some unmeasurable error:

where ε is the error term that is assumed to be independent from X, the function f ∈ F  
explains how Y is generated from X, F  is an appropriately constrained functional class, 
and θ1 is the parameter set involved in f. We assume that the transformation from (X , ε) 
to (X, Y) is invertible, such that N can be uniquely recovered from the observed variables 
X and Y.

For convenience of presentation, let us assume that both X and Y are one-dimensional 
variables. Without precise knowledge on the data-generating process, the SEM should 
be flexible enough such that it could be adapted to approximate the true data-generating 
process; more importantly, the causal direction implied by the SEM has to be identifi-
able in most cases, i.e., the model assumption, especially the independence between the 
error and cause, holds for only one direction, such that it implies the causal asymmetry 
between X and Y. Under the above conditions, one can then use SEMs to determine the 
causal direction between two variables, given that they have a direct causal relationship 
in between and do not have any confounder: for both directions, we fit the SEM, and 
then test for independence between the estimated error term and the hypothetical cause 
and the direction which gives an independent error term is considered plausible.

Several forms of the SEM have been shown to be able to produce unique causal direc-
tions and have received practical applications. In the linear, nonGaussian, and acyclic 
model [LiNGAM (Shimizu et al. 2006)], f is linear, and at most one of the error term ε 
and cause X is Gaussian. The nonlinear additive noise model (Hoyer et al. 2009; Zhang 
and Hyvärinen 2009) assumes that f is nonlinear with additive noise (error) ε. In the 
post-nonlinear (PNL) causal model (Zhang and Hyvärinen 2009), the effect Y is further 
generated by a post-nonlinear transformation on the nonlinear effect of the cause X plus 
error term ε:

(1)Y = f (X , ε; θ1),
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where both f1 and f2 are nonlinear functions and f2 is assumed to be invertible.7 The 
post-nonlinear transformation f2 represents the sensor or measurement distortion, 
which is frequently encountered in practice. In particular, the PNL causal model has a 
very general form [the former two are its special cases), but it has been shown to be 
identifiable in the generic case (except five specific situations given in  (Zhang and 
Hyvärinen 2009)]. It is worth noting that it is not closed under marginalization, even if 
there are no confounders. In the subsequent sections, we will discuss the identifiability 
of various SEMs, how to distinguish cause from effect with the SEMs, and the relation-
ships between different principles for causal discovery, including mutual independence 
of the error terms and the causal Markov condition, respectively.

Another issue we are concerned with is causal discovery from time series. According 
to  Granger (1980), Granger’s causality in time series falls into the framework of con-
straint-based causal discovery combined with the temporal constraint that the effect 
cannot precede the cause. The SEM, together with the above temporal constraint, has 
also been exploited to estimate time-delayed causal relations possibly with instantane-
ous effects   (Zhang and Hyvärinen 2009). Compared to the conditional independence 
relationships, the SEM, if correctly specified, is able to recover more about the causal 
information. In this paper, when talking about causality in time series, we assume that 
the causal relations are linear with nonGaussian errors. In "Causal discovery from time 
series" section, after reviewing linear Granger causality with instantaneous effects, we 
focus on two problems which are traditionally difficult to solve. In particular, we pre-
sent the theoretical results which make it possible to discover the temporal causal rela-
tions at the true causal frequency from subsampled data (Gong et al. 2015), that is, one 
can recover monthly causal relations from quarterly data or estimate rapid causal influ-
ences between stocks from their daily returns. Moreover, even when there exist con-
founder time series, theoretical results suggested that one can still identify the causal 
relations among the observed time series as well as the influences from the confounder 
series (Geiger et al. 2015).

Several SEMs and the identifiability of causal direction
When talking about the causal relation between two variables, traditionally people were 
often concerned with the linear-Gaussian case, where the involved variables are Gauss-
ian with a linear causal relation, or the discrete case. It turned out that the former case 
is one of the atypical situations where the causal asymmetry does not leave a footprint 
in the observed data or their joint distribution: the joint Gaussian distribution is fully 
determined by the mean and covariance, and with proper rescaling, the two variables are 
completely asymmetric w.r.t. the data distribution.

In the discrete case, if one knows precisely what SEM class generated the effect from 
cause, which, for instance, may be the noisy AND or noisy XOR gate, then under mild 
conditions, the causal direction can be easily seen from the data distribution. However, 

(2)Y = f2(f1(X)+ ε),

7  In  (Zhang and Chan 2006) both functions f1 and f2 are assumed to invertible; this causal model, as a consequence, 
can be estimated by making use of post-nonlinear independent component analysis (PNL-ICA) Taleb and Jutten (1999), 
which assumes that the observed data are component-wise invertible transformations of linear mixtures of the inde-
pendence sources to be recovered.
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generally speaking, if the precise functional class of the causal process is unknown, in 
the discrete case it is difficult to recover the causal direction from observed data, espe-
cially when the cardinality of the variables is small. As an illustration, let us consider the 
situation where the causal process first generates continuous data and discretizes such 
data to produce the observed discrete ones. It is then not surprising that certain proper-
ties of the causal process are lost due to discretization, making causal discovery more 
difficult. In this paper we focus on the continuous case.

Causal direction is not identifiable without constraints on SEMs

In the SEM (1), the error term is assumed to be independent from the cause. If for the 
reverse direction, one cannot find a function to represent X in terms of the hypothetical 
cause Y and an error term which is independent from Y, then we can determine the true 
causal direction or distinguish cause from effect. Unfortunately, this is not the case if we 
do not impose any constraint on the function f, as explained below.

According to Hyvärinen and Pajunen (1999), given any two random variables X and Y 
with continuous support, one can always construct another variable, denoted by ε̃, which 
is statically independent from X. In (Zhang et al. 2015) the class of functions to produce 
such an independent variable ε̃ (or called independent error term in our causal discovery 
context) was given, and it was shown that this procedure is invertible: Y is a function of 
X and ε̃.

This is also the case for the hypothetical causal direction Y → X: we can also always 
represent X as a function of Y and an independent error term. That is, any two variables 
would be symmetric according to the SEM, if f is not constrained. Therefore, in order 
for the SEMs to be useful to determine the causal direction, we have to introduce cer-
tain constraints on the function f such that the independence condition on the error and 
the hypothetical cause holds for only one direction. Below we focus on the two-variable 
case, and the results can be readily extended to the case with an arbitrary number of 
variables, as shown in Peters et al. (2011).

Linear non‑Gaussian causal model

The linear causal model in the two-variable case can be written as

where  Let us first give an illustration with simple examples why it is possible to 
identify the causal direction between two variables in the linear case. Assume Y is gener-
ated from X in a linear form, i.e., Y = X + ε, where 

 Figure 3 shows the scatterplot of 1000 data points of the two variables X and Y (col-
umns 1 and 3) and that of the predictor and regression residual for two different regres-
sion tasks (columns 2 and 4). The three rows correspond to different settings: X and E 
are both Gaussian (case 1), uniformly distributed (case 2), and distributed according to 
some super-Gaussian distribution (case 3). In the latter two settings, X and E are non-
Gaussian, and one can see clearly that for regression of X given Y (the anti-causal or 
backward direction), the regression residual is not independent from the predictor any 
more. In other words, in those two situations, the regression residual is independent 

(3)Y = bX + ε,
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from the predictor only for the correct causal direction, giving rise to the causal asym-
metry between X and Y.

Rigorously speaking, if at most one of X and ε is Gaussian, the causal direction is 
identifiable, due to the independent component analysis (ICA) theory (Hyvärinen et al. 
2001), or more fundamentally, due to the Darmois-Skitovich theorem  (Kagan et  al. 
1973). This is known as the linear, nonGaussian, acyclic model [LiNGAM (Shimizu et al. 
2006)]. Methods for estimating LiNGAM will be talked about in   "Determination of 
causal direction based on SEMs" section.

It is worth mentioning that in the linear case, it is possible to further estimate the 
effect of the underlying confounders in the system, if there are any, by exploiting over-
complete ICA (which allows more independent sources than observed variables) (Hoyer 
et  al. 2008). Furthermore, when the underlying causal model has cycles or feedbacks, 
which violates the acyclicity assumption, one may still be able to reveal the causal knowl-
edge under certain assumptions (Lacerda et al. 2008).

On the ubiquitousness of non‑Gaussianity in the linear case

According to the central limit theorem, under mild conditions, the sum of independent 
variables tends to be Gaussian as the number of components becomes larger and larger. 
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Fig. 3  Illustration of causal asymmetry between two variables with linear relations. The data were generated 
according to equation 3 with ε ⊥⊥ X, i.e., the causal relation is X → Y . From top to bottom: X and ε both 
follow the Gaussian distribution (case 1), uniform distribution (case 2), and a certain type of super-Gaussian 
distribution (case 3). The two columns on the left show the scatter plot of X and Y and that of X and the regres-
sion residual for regression of Y given X, and the two columns on the right correspond to regression of X given 
Y. Here we used 1000 data points. One can see that for regression of X given Y, in cases 2 and 3 the residual is 
not independent from the predictor, although they are uncorrelated by construction
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One may then challenge the nonGaussianity assumption in the LiNGAM model. Here 
we argue that in the linear case, nonGaussian distributions are ubiquitous.

Cramér’s decomposition theorem states that if the sum of two independent real-
valued random variables is Gaussian, then both of the summand variables much be 
Gaussian as well; see  [Cramér (1970), p. 53]. By induction, this means that if the sum 
of any finite independent real-valued variables is Gaussian, then all summands must be 
Gaussian. In other words, a Gaussian distribution can never be exactly produced by lin-
ear composition of variables any of which is nonGaussian. This nicely complements the 
central limit theorem: (under proper conditions) the sum of independent variable gets 
closer to Gaussian, but it cannot be exactly Gaussian, except that all summand variables 
are Gaussian. This linear closure property of the Gaussian distribution implies the rare-
ness of the Gaussian distribution and ubiquitousness of nonGaussian distributions, if we 
believe the relations between variables are linear. However, the closer it gets to Gauss-
ian, the harder it is to distinguish the direction. Hence, the practical question is, are the 
errors typically nonGaussian enough to distinguish causal directions in the linear case?

Nonlinear additive noise model

In practice nonlinear transformation is often involved in the data-generating process and 
should be taken into account in the functional class. As a direct extension of LiNGAM, 
the nonlinear additive noise model represents the effect as a nonlinear function of the 
cause plus independent error (Hoyer et al. 2009):

It has been shown that the set of all p(X) for which the backward model also admits an 
independent error term is contained in a 3-dimensional affine space. Bearing in mind 
that the space of all possible p(X) is infinite dimensional, one can see that roughly speak-
ing, in the generic case, if the data were generated by the nonlinear additive noise model, 
the causal direction is identifiable. This model is a special case of the PNL causal model, 
which is to be discussed below, and the identifiability results for the PNL causal model 
also apply here.

With certain modifications, the additive noise model also applies to discrete vari-
ables to represent a certain type of data-generating process in the discrete case (Peters 
et al. 2010). The additive noise model has also been used to model cyclic causal relations 
between two variables at an equilibrium state (Mooij et al. 2011).

Post‑nonlinear causal model

If the assumed SEM is too restrictive to be able to approximate the true data-generating 
process, the causal discovery results may be misleading. Therefore, if the specific knowl-
edge about the data-generating mechanism is not available, to make it useful in practice, 
the assumed causal model should be general enough, such that it can reveal the data-
generating processes approximately.

The PNL causal model takes into account the nonlinear influence from the cause, the 
noise effect, and the possible sensor or measurement distortion in the observed varia-
bles (Zhang and Hyvärinen 2009, 2010). See Eq. (2) for its form; a slightly more restricted 
version of the model, in which the inner function, f1, is also assumed to be invertible, 

(4)Y = fAN (X)+ ε.



Page 16 of 28Spirtes and Zhang ﻿Appl Inform  (2016) 3:3 

and was proposed in Zhang and Chan (2006) and applied to causal analysis of stock 
returns. It has the most general form among all well-defined SEMs according to which 
the causal direction is identifiable in the general case. (The model used in Mooij et al. 
(2010) does not impose structural constraints but assumes a certain type of smoothness; 
however, it does not lead to theoretical identifiability results.) Clearly it contains the lin-
ear model and nonlinear additive noise model as special cases. The multiplicative noise 
model, Y = X · ε, where all involved variables are positive, is another special case, since 
it can be written as Y = exp(logX + log ε), where log ε is considered as a new noise 
term, f1(X) = log(X), and f2(·) = exp(·).

Theoretical identifiability of the causal direction

As stated in  "Causal direction is not identifiable without constraints on SEMs" section, 
the identifiability of the causal direction is a crucial issue in SEM-based causal discov-
ery. Since LiNGAM and the nonlinear additive noise model are special cases of the PNL 
causal model, the identifiability conditions of the causal direction for the PNL causal 
model also entail those for the former two SEMs.

Such identifiability conditions for the PNL causal model were established by a proof by 
contradiction (Zhang and Hyvärinen 2009). We assume the causal model holds in both 
directions X → Y  and Y → X, and show that this implies very strong conditions on 
the distributions and functions involved in the model. Suppose the data were generated 
according to the PNL causal model in settings other than those specific conditions; then 
in principle, the backward direction does not follow the model, and the causal direction 
can be determined.

Assume that the data (X, Y) are generated by the PNL causal model with the causal 
relation X → Y . This data-generating process can be described as (2). Moreover, let us 
assume that the backward direction, Y → X also follows the PNL causal model with 
independent error. That is,

where Y and εY  are independent, g1 is nonconstant, and g2 is invertible.
Equations (2) and (5) define the transformation from (X , ε)⊺ to (Y , εY )

⊺; as a conse-
quence, p(Y , εY ) can be expressed in terms of p(X , ε) = p(X)p(ε). The identifiability 
results were obtained based on the linear separability of the logarithm of the joint den-
sity of independent variables, i.e., for a set of independent random variables whose joint 
density is twice differentiable, the Hessian of the logarithm of their density is diagonal 
everywhere (Lin 1998). Since Y and εY  are assumed to be independent, log p(Y , εY ) then 
follows such a linear separability property. This implies that the second-order partial 
derivative of log p(Y , εY ) w.r.t. Y and εY  is zero. It then reduces to a differential equation 
of a bilinear form. Under certain conditions (e.g., p(ε) is positive on (−∞,+∞)), the 
solution to the differential equation gives all cases in which the causal direction is not 
identifiable according to the PNL causal model. Table 1 in Zhang and Hyvärinen (2009) 
summarizes all five nonidentifiable cases. The first one is the linear-Gaussian case, in 
which the causal direction is well known to be nonidentifiable. Roughly speaking, to 
make one of those cases true, one has to adjust the data distribution and the involved 

(5)X = g2(g1(Y )+ εY ),
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nonlinear functions very carefully. In other words, in the generic case, the causal direc-
tion is identifiable if the data were generated according to the PNL causal model.

Nonlinear deterministic case: information‑geometric causal inference

Suppose Y was generated from X by a nonlinear deterministic and invertible function, 
i.e., Y = h(X); is it possible to distinguish cause from effect? One way to tackle this prob-
lem is to make use of a certain type of independence between p(X) and the transforma-
tion h (Daniusis et al. 2010; Janzing et al. 2012). In particular, they considered p(X) and 
log |h′(X)| as random processes indexed by x values and showed that if they are uncor-
related w.r.t. a reference measure (e.g., the uniform distribution), then for the reverse 
direction, p(Y) and log |(h−1)′(Y )| are positively correlated, implying the asymmetry 
between X and Y. Based on this observation, the methods of information-geometric 
causal inference (IGCI) was derived.

In this case, the identifiability of the causal direction relies on the assumption that the 
causal process is noiseless. Moreover, IGCI assumes that the distributions p(X) and p(Y) 
and the log-derivative of the nonlinear transformation, log |h′(X)|, are complex enough 
so that one can assess the correlation and compare the two candidate directions reliably.

Determination of causal direction based on SEMs
LiNGAM can be estimated from observational data in a computationally relatively 
efficient way. Suppose we aim to estimate the causal model underlying the observable 
random vector X = (X1, ...,Xn)

⊺. In matrix form we can represent such causal relations 
with a matrix B, i.e., X = BX + E, where B can be permuted to a strictly lower-triangular 
matrix and E is the vector of independent error terms. This can be rewritten as

where I denotes the identity matrix. The approach of ICA-LiNGAM  (Shimizu et  al. 
2006) estimates the matrix B in two steps. It first applies ICA (Hyvärinen et al. 2001) on 
the data:

such that Z has independent components. Second, an estimate of B can be found by per-
muting and rescaling the matrix W, as implied by the correspondence between Eqs. 6 
and 7.

As the number of variables, n, increases, the estimated linear transformation W may 
converge to local optima more likely and involve more and more random errors, causing 
estimation errors in the causal model. Bear in mind that the causal matrix we aim to esti-
mate, B, is very sparse because it can be permuted to a strictly lower-triangular matrix. 
Hence, to improve the estimation efficiency, one may enforce the sparsity constraint 
on the entries of W, as achieved by ICA with sparse connections  (Zhang et al. 2009). 
Another way to reduce the estimation error is to find the causal ordering by recursively 
performing regression and independence test between the predictor and residual, as 
done by DirectLiNGAM (Shimizu et al. 2011).

However, generally speaking, causal discovery based on nonlinear SEMs are not 
computationally as efficient as in the linear case. A commonly used approach to 

(6)E = (I− B)X,

(7)Z = WX,
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distinguishing cause from effect with nonlinear SEMs consists of two steps. First, one 
fits the model (e.g., the nonlinear additive noise model or the PNL causal model) on the 
data for both hypothetical causal directions. The second step is to do independence test 
between the estimated error term and hypothetical cause (Hoyer et al. 2009; Zhang and 
Hyvärinen 2009). If the independence condition holds for one and only one hypothetical 
direction, the causal relation between the two variables X and Y implied by the corre-
sponding SEM has been successfully found. If neither of them holds, the data-generating 
process may not follow the assumed SEM, or there exists some confounder influencing 
both X and Y. If both hold, the cause and effect cannot be distinguished by the exploited 
SEM; in this case, additional information, such as the smoothness of the involved non-
linearities, may help find the causal model with a lower complexity. We adopted the 
Hilbert Schmidt information criterion (HSIC) (Gretton et al. 2005) for statistical inde-
pendence test in the first step. Below we discuss how to estimate the function as well as 
the error term in the first step.

For the nonlinear additive noise model, the function fAN is usually estimated by per-
forming Gaussian process (GP) regression (Hoyer et al. 2009). For details on GP regres-
sion, one may refer to Rasmussen and Williams (2006).

Estimation of the PNL causal model (2) has several indeterminacies: the sign, mean, 
and scale of the error term varepsilon, and accordingly, the sign, location, and scale of fi1 
are arbitrary. In the estimation procedure, one may impose certain constraints to avoid 
such indeterminacies in the estimate. However, we should note that in principle, we do 
not care about those indeterminacies in the causal discovery context, since they do not 
change the statistical independence or dependence property between the estimated 
error term and the hypothetical cause.

It is well known that for linear regression, the maximum likelihood estimator of the 
coefficient is still statistically consistent even if the error distribution is wrongly assumed 
to the Gaussian. However, this may not be the case for general nonlinear models. As 
shown in  [Zhang et al. (2015), Section 3.2], if the error distribution mis-specified, the 
estimated PNL causal model (2) may not be statistically consistent, even when the above 
indeterminacies in the estimate are properly tackled. Therefore, the error distribution 
should be adaptively estimated from data, if the true one is not known a priori. It has 
been proposed to estimate the PNL causal model (2) by mutual information minimiza-
tion (Zhang and Hyvärinen 2009) with the involved nonlinear functions represented by 
multi-layer perceptrons (MLPs). Later, in Zhang et al. (2015) the PNL causal model was 
estimated by extending the framework of warped Gaussian processes to allow a flexible 
error distribution, which is represented by a mixture of Gaussians (MoG).

On the relationships among different principles for model estimation
One usually uses maximum likelihood to fit the SEM together with a DAG to the given 
data. Not surprisingly, the negative likelihood (with the distribution of the error term 
adaptively estimated from data) is equivalent to the mutual information between the 
estimated error terms, as stated in Theorem 3 in Zhang et al. (2015). The higher the like-
lihood, the less dependent the estimated error terms. (Note that the root variables in the 
DAG are also counted as error terms.)
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On the other hand, the constraint-based approach to causal discovery exploits con-
ditional independence relationships of the variables to derive (the equivalence class of ) 
the causal structure  (Spirtes et al. 2001; Pearl 2000). How are these principles, includ-
ing mutual independence of the estimated error terms and the causal Markov condition, 
related to each other? Below we will answer this question, and the results in this section 
hold for an arbitrary number of variables.

Let us consider optimization over different DAG structures to find the causal struc-
ture. Assume that we optimally fit the nonlinear functions fi according to the given can-
didate DAG structure. First consider the situation where we fit the nonlinear additive 
noise model, i.e.,

to the data. It has been shown that mutual independence of the error terms and con-
ditional independence between observed variables (together with the independence 
between εi and PAi) are equivalent. Furthermore, they are achieved if and only if the 
total entropy of the disturbances is minimized (Zhang and Hyvärinen 2009). More spe-
cifically, when fitting the model (8) with a hypothetical DAG causal structure to the 
given variables X1, . . . ,Xn, the following three properties are equivalent:

1.	 The causal Markov condition holds (i.e., each variable is independent of its nonde-
scendants in the DAG conditioning on its parents), and in addition, the error term in 
Xi is independent from the parents of Xi.

2.	  The error terms Ni are mutually independent.
3.	  The total entropy of the error terms, i.e., 

∑

i H(εi), is minimized, with the minimum 
H(X1, . . . ,Xn).

Let us then consider the PNL causal model. When one fits the PNL causal model

to the data, the scale of the error terms as well as fi1 is arbitrary, since fi2 is also to be 
estimated. Consequently, unlike for the nonlinear additive noise model, in the PNL 
causal model context, it is not meaningful to talk about the total entropy of the error 
terms (see condition (3) above). However, as shown in  Zhang and Hyvärinen (2009), 
when fitting the PNL causal model with a hypothetical DAG causal structure to the data, 
we still have the equivalence between conditions (1) and (2) above.

Given more than two variables, one way to estimate the causal model based on SEMs 
is to use exhaustive search: for all possible causal orderings, fit SEMs for all hypothetical 
effects separately, and then do model checking by testing for independence between the 
estimated error and the corresponding hypothetical causes. However, note that the com-
plexity of this procedure increases super-exponentially along with the number of vari-
ables. Smart approaches are then needed.

The above result concerning the relationship between mutual independence of the 
error terms and the causal Markov condition combined with the independence between 
each error term, and its associated parents suggests a two-step method to find the causal 

(8)Xi = fAN ,i(PAi)+ εi,

(9)Xi = fi2(fi1(PAi)+ εi),
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structure implied by the PNL causal model. One first uses the constraint-based approach 
to find the Markov equivalent class from conditional independence relationships with 
proper nonparametric conditional independence tests (e.g.,  Zhang et  al. (2011)). The 
PNL causal model is then used to identify the causal directions that cannot be deter-
mined in the first step: for each DAG contained in the equivalent class, we estimate 
the error terms and determine whether this causal structure is plausible by examining 
whether the disturbance in each variable Xi is independent from the parents of Xi. Con-
sequently, one avoids the exhaustive search over all possible causal structures and high-
dimensional statistical tests of mutual independence of all error terms. In the context of 
nonlinear additive noise model, such a hybrid scheme for causal discovery of more than 
two variables has been discussed in Zhang and Hyvärinen (2009), Tillman et al. (2009).

Causal discovery from time series
Both the constraint-based and SEM-based approaches to causal discovery are directly 
applicable to find causal relations over the random variables involved in the stochastic 
processes (or time series); moreover, one can benefit from the temporal constraint that 
the effect cannot precede the cause, which helps reduce the search space of the causal 
structure. The work Eichler (2012) provides an overview over various definitions of cau-
sation w.r.t. time series and reviews some causal discovery methods. Below we mainly 
consider SEM-based causal discovery from time series; more specifically, we assume lin-
earity of the causal relations and consider three problems, namely linear Granger causal 
analysis with instantaneous effects, causal discovery from systematically subsampled 
data, and that in the presence of hidden time series.

Linear Granger causality and its extension with instantaneous effects

For Granger causal analysis in the linear case Granger (1980), one fits the following VAR 
model (Sims 1980) to the data:

where Xt = (X1t ,X2t , ...,Xnt)
⊺ is the vector of the observed data, εt = (ε1t , ..., εnt)

⊺ is the 
temporally and contemporaneously independent noise process, and causal transition 
matrix A contains the temporal causal relations.

In practice it is found that after fitting the VAR model, the residuals are often con-
temporaneously dependent. To account for such dependence, the above VAR model has 
been extended to allow instantaneous causal effects between Xit (Hyvärinen et al. 2010). 
Let B0 contains the instantaneous causal relations between Xt. Equation (10) changes to

To estimate all involved parameters in Granger causality with instantaneous effects, 
two estimation procedures have been proposed in Hyvärinen et al. (2010). The two-step 
method first estimates the errors in the above VAR model and then applies independent 
component analysis (ICA) (Hyvärinen et al. 2001) on the estimated errors. The other is 

(10)Xt = AXt−1 + εt ,

(11)

Xt = B0Xt + AXt−1 + εt ,

⇒(I− B0)Xt = AXt−1 + εt ,

⇒Xt = (I− B0)
−1

AXt−1 + (I− B0)
−1εt .
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based on multichannel blind deconvolution, which is statistically more efficient (Zhang 
and Hyvärinen 2009).

Causal discovery from subsampled data

Suppose the original high-resolution data were generated by (10). We consider low-res-
olution data generated by subsampling (or systematic sampling) with the subsampling 
factor k. The work (Danks and Plis 2014) aims to infer the causal structure at the cor-
rect causal frequency directly from the causal structure learned from the subsampled 
data; they do not assume any specific form for the causal relations, and their method is 
completely nonparametric, but on the other hand, an MCMC search is needed, which 
involves high computational load, and this method cannot estimate the strength of the 
causal relations.

Alternatively, one may assume an SEM for the underlying causal model at the true 
causal frequency, which may be fully identifiable from subsampled data. In particular, let 
us consider the linear case; one is then interested in finding the causal transition matrix 
A at the true causal frequency. Traditionally, if one uses only the second-order infor-
mation, this suffers from parameter identification issues  (Palm and Nijman 1984), i.e., 
the same subsampled (low-frequency) model may disaggregate to several high frequency 
models, which are observationally equivalent at the low frequency.

Effect of subsampling (systematic sampling)

Suppose that due to low resolution of the data, there is an observation every k time steps. 
That is, the low-resolution observations X̃ = (X̃1, X̃2, , ..., X̃t) are (X1,X1+k , ...,X1+(t−1)k); 
here we have assumed that the first sampled point is Xx1. We then have

According to (12), subsampled data X̃t also follows a vector autoregression (VAR) model 
with the error term εt, and one can see that as T → ∞, the discovered temporal causal 
relations from such subsampled data are given by Ak. As k → ∞, Ak tends to vanish, 
and the subsampled data will be contemporaneously dependent. (We have assumed that 
the system is stable, in that all eigenvalues of A have modulus smaller than one.)

Misleading Granger causal relations in low‑resolution data 

An illustration Suppose A =

[
0.8 0.5
0 −0.8

]

. Consider the case where k = 2. The corre-

sponding VAR model for the subsampled data is

(12)

X̃t+1 = X1+tk = AX1+tk−1 + ε1+tk

= A(AX1+tk−2 + ε1+tk−1)+ ε1+tk

= ...

= A
k
X̃t +

k−1∑

l=0

A
lε1+tk−l

︸ ︷︷ ︸

�εt

.

X̃t = A
2
X̃t−1 + εt =

[
0.64 0
0 0.64

]

X̃t−1 + εt .
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That is, the causal influence from X2,t−1 to X1t is missing in the corresponding low-reso-
lution data (with k = 2).

Identifiability of the causal relations at the causal frequency

It has been shown that if the distributions pNi are nonGaussian and different for different 
i, together with other technical assumptions, the transition matrix associated with the 
causal-frequency data, A, is identifiable from the subsampled data X̃. As a by-product, 
the result also indicates that the subsampled data, although contemporaneously depend-
ent, actually do not follow the model of linear Granger causality with instantaneous 
effects (Gong et al. 2015).

Let the distributions of the noise terms be represented by the MoG. An EM algorithm 
and a variational EM (with mean field approximation) were then proposed to estimate A 
from subsampled data.

Causal discovery with hidden time series (Confounders)

In practice it is usually difficult and even impossible to collect all relevant time series 
when doing causal analysis on given ones. We approach this problem as follows: We 
assume that the (multivariate) measurements are a sample of a multivariate random pro-
cess Xt, which, together with another random process Zt, forms a VAR process. That is,

where Zt is not measured and can be considered as confounder time series, B is the 
causal transition matrix for the observed process Xt, and C contains the influence from 
Zt to the observed process Xt. The theoretical issue is whether B and C are identifiable 
from solely the observed process Xt.

Practical Granger causal analysis can go wrong

In practical Granger causal analysis, one just performs a linear regression of present on 
past on the observed Xt and then interprets the regression matrix causally. While mak-
ing the ideal definition practically feasible, this may lead to wrong causal conclusions in 
the sense that it does not comply with the causal structure that we would infer, given we 
had more information. Let us give an example for this. Let Xt be bivariate and Zt be uni-
variate. Moreover, assume

and let the covariance matrix of εt be the identity matrix. To perform practical Granger 
causal analysis, we proceed as usual: we fit a VAR model on only the observable process 
Xt, in particular calculate the VAR transition matrix by

(13)

[
Xt

Zt

]

=

[
B C

D E

]

·

[
Xt−1

Zt−1

]

+ εt ,

�
B C

D E

�

=





0.9 0 0.5
0.1 0.1 0.8
0 0 0.9



,

BpG = E(XtX
⊺
t−1)E

−1(XtX
⊺
t ) =

(
0.89 0.35
0.08 0.65

)

.
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(up to rounding), and interpret the coefficients of BpG as causal influences. Although, 
according to B, the true time-delayed causal relations in Xt, X2t does not cause X1t, BpG 
suggests that there is a strong causal effect X2,t−1 → X1t with the strength 0.35. It is even 
stronger than the relation X1,t−1 → X2t, which actually exists in the complete model 
with the strength 0.1.

Identifiability of B and Almost Identifiability of C

Assume that all components of εt are nonGaussian and that the dimensionality of the 
hidden process Zt is not higher than that of the observed process Xt. Together with some 
further technical assumptions, it has been shown that B is identifiable from Xt; further-
more, the set of columns of C with at least two nonzero entries is identifiable from up to 
scaling of those columns (Geiger et al. 2015).

One can then use a MoG to represent the distributions of the components of εt and 
develop a variation EM algorithm to estimate B and C from solely Xt.

Conclusion and open problems
We have reviewed central concepts in and fundamental methodologies for causal infer-
ence and discovery. The concepts include manipulations, causal models, sample pre-
dictive modeling, causal predictive modeling, structural equation models, the causal 
Markov assumption, and the faithfulness assumption. We have discussed the constraint-
based causal structure search and its properties. In the second part of the paper, we have 
given a survey of structural equation models which enable us to fully identify causal 
structure from observational data. We focused on the two-variable case, where the task 
is to distinguish cause from effect. We have reviewed the linear nonGaussian causal 
model, nonlinear additive noise model, and the post-nonlinear causal model, listed from 
the most to the least restrictive. We addressed the identifiability of the causal direction: 
for those three models, in the generic case, the backward direction does not admit an 
independent error term, and, as a consequence, it is possible to distinguish cause from 
effect. We have also briefly discussed the procedure to do so, which consists of fitting 
the structural equation model and doing independence test between the estimated error 
term and the hypothetical cause.

In the last three decades, enlightening progress has been made in the field of causal 
discovery and inference. However, there are still many fundamental questions to be 
answered:8

• • What new models are appropriate for different combinations of kinds of data, e.g., 
experimental and observational (Cooper and Yoo 1999; Danks 2002; Yoo and Cooper 
2004; Eberhardt et al. 2005; Yoo et al. 2006; Eberhardt et al. 2006)?

• • What new models are appropriate for different kinds of background knowledge, and 
different families of densities?

• • What kind of scores can be used to best evaluate causal models from various kinds of 
data? In a related vein, what are good families of prior distributions that capture vari-
ous kinds of background knowledge?

8  The content and organization of the following open questions are largely due to suggestions from Constantin Aliferis, 
whom we thank for his suggestions.
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• • How can search algorithms be improved to incorporate different kinds of back-
ground knowledge, search over different classes of causal models, run faster, handle 
more variables and larger sample sizes, be more reliable at small sample sizes, and 
produced output that is as informative as possible?

• • For existing and novel causal search algorithms, what are their semantic and syn-
tactic properties (e.g., soundness, consistency, maximum informativeness)? What are 
their statistical properties (pointwise consistency, uniform consistency, sample effi-
ciency)? What are their computational properties (computational complexity)?

• • What plausible alternatives are there to the Causal Markov and Faithfulness 
Assumptions? Are there other assumptions might be weaker and hold in more 
domains and applications without much loss about what can be reliably inferred? 
Are there stronger assumptions that are plausible for some domains that might allow 
for stronger causal inferences? How often are these assumptions violated, and how 
much do violations of these assumptions lead to incorrect inferences?

• • There are special assumptions, such as linearity, which can improve the strength of 
causal conclusions that can be reliably inferred, and the speed and sample efficiency 
of algorithms that draw the conclusions. What other distribution families or stronger 
assumptions about a domain are there that are plausible for some domains and how 
can they be used to improve causal inference?

• • Can various statistical assumptions be relaxed? For example, what if the sam-
ple selection process is not i.i.d., but may be causally affected by variables of inter-
est (Cooper 1995; Spirtes et al. 1995; Cox and Wermuth 1996; Cooper 2000; Richard-
son and Spirtes 2002)?

In addition, there are also a number of open problems concerning SEM-based causal 
discovery and the asymmetry between cause and effect.

• • First, one can consider structural equation models as a way to represent the con-
ditional distribution of the effect given the cause. Can we then find hints as to the 
causal direction directly from the data distribution? In other words, can we find a 
general way to directly characterize the causal asymmetry in light of certain prop-
erties of the data distribution? If we managed to do so, it would hopefully put the 
causal Markov condition, the independent noise condition (in the SEMs), and the 
independent transformation condition in the nonlinear noiseless case (Janzing et al. 
2012) under the same umbrella. To this end, an attempt has been made by exploiting 
the so-called “exogeneity” property of a causally sufficient causal system (Zhang et al. 
2015). But it is not clear whether this property is able to bring about computationally 
efficient and widely applicable causal discovery methods. Like the work Mooij et al. 
(2010), it might be difficult or even impossible to derive theoretical identifiability 
conditions of the causal direction for such a method.

• • Secondly, note that nonlinear structural equation models are usually intransitive. 
That is, if both causal processes X1 → X2 and X2 → X3 admit a particular type of 
structural equation model, say, the nonlinear additive noise model, the process 
X1 → X3 does not necessarily follow the same model. (Linear models are transitive.) 
This could be a potential issue with structural equation model-based causal discov-
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ery: it may fail to discover indirect causal relations. (Here by direction causal rela-
tions, we mean the causal relations in which only a single-noise variable is involved.) 
On the other hand, this may be a benefit of using structural equation models for 
causal discovery, in that it is possible to detect the existence of causal intermediate 
variables and further recover them. But how to do so is currently unclear.

• • We have discussed how different types of independence, including conditional inde-
pendence in the causal Markov condition and statistical independence between the 
error term and hypothetical cause in structural equations models, help discovery 
causal information from data. On the other hand, it has been demonstrated that this 
type of independence (which is, loosely speaking, the independence between how 
the cause is generated and how the effect is generated from cause) is able to facili-
tate understanding and solving some machine learning or data analysis problems. 
For instance, it implies that when the feature causes the label (or target), unlabeled 
data points will not help in the semi-supervised learning scenario  (Schölkopf et al. 
2012), and inspired new settings and formulations for domain adaptation by charac-
terizing what information to transfer (Zhang et al. 2013, 2015). It is under investiga-
tion whether other machine learning methods including “adaptive boosting” can be 
understood from the causal perspective. In addition, it is unclear whether the learn-
ing guarantees for supervised learning actually depend on the causal relationship 
between the feature and target (or label), i.e., the causal role of the feature w.r.t. the 
target.

• • Next, developing efficient methods for causal discovery of more than two variables 
based on structural equation models is an important step towards large-scale causal 
analysis in various domains including neuroscience and biology. To make causal dis-
covery computationally efficient, one may have to limit the complexity of the causal 
structure, say, limit the number of direct causes of each variable. Even so, a smart 
optimization procedure instead of exhaustive search is still missing in the literature.

• • Finally, in causal analysis of large-scale real-world systems, there are usually many 
practical issues to consider. For instance, unmeasured confounders usually cause 
much difficulty in causal discovery, and one may combine the FCI algorithm (Spirtes 
et al. 1995), which is a constraint-based method allowing confounders, with appro-
priate methods for SEM-based causal discovery. Because an undirected graph that 
represents a probability distribution p contains a superset of the adjacencies in a pat-
tern that represents p, which in turn contains a superset of the adjacencies in a PAG 
that represents p, the output of an undirected graph search or a pattern search can 
be used as the starting point of a constraint-based search for a PAG, instead of start-
ing with a complete undirected graph as the starting point (as FCI currently does). 
But an optimal way to do so is to be explored. Moreover, in practice, especially in 
finance, economics, and neuroscience, the causal model may be time-varying. There 
exist some methods aiming to detect the changes [Talih and Hengartner (2005); 
Adams and Mackay 2007); Kummerfeld and Danks 2013)] or directly model time-
varying causal relations (see, e.g.,  Huang et  al. (2015)) in a dynamic manner. They 
usually focus on the linear case and cannot quickly locate changing causal relations. 
The work  (Zhang et  al. 2015) extends constraint-based causal discovery to be able 
to directly determine those variables with changing generating processes and dis-
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cover the correct causal skeleton. However, it does not show how the causal rela-
tions change over time. It is of practical importance to develop methods they are able 
to detect and estimate time-varying causal models efficiently (in both statistical and 
computational senses).

Software packages and source code

The following software packages are available online:

• • The Tetrad project webpage (Tetrad implements a large number of causal discovery 
methods, including PC and its variants, FCI, and LiNGAM): http://www.phil.cmu.
edu/tetrad/.

• • Kernel-based conditional independence test  Zhang et  al. (2011): http://people.
tuebingen.mpg.de/kzhang/KCI-test.zip.

• • LiNGAM and its extensions  Shimizu et  al. (2006, 2011): https://sites.google.com/
site/sshimizu06/lingam.

• • Fitting the nonlinear additive noise model Hoyer et al. (2009): http://webdav.tuebin-
gen.mpg.de/causality/additive-noise.tar.gz.

• • Distinguishing cause from effect based on the PNL causal model  Zhang and 
Hyvärinen (2009, 2010): http://webdav.tuebingen.mpg.de/causality/CauseOrEffect_
NICA.rar.

• • Probabilistic latent variable models for distinguishing between cause and effect Mooij 
et al. (2010): http://webdav.tuebingen.mpg.de/causality/nips2010-gpi-code.tar.gz.

• • Information-geometric causal inference Daniusis et al. (2010); Janzing et al. (2012): 
http://webdav.tuebingen.mpg.de/causality/igci.tar.gz.
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