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Background
In an extended sense, we use a geno-measure g (shortly g-measure) to refer a genetic 
measure that takes either a real value or one of a few labels, e.g., the expression level of a 
gene, the frequency of a mutation, the genotype of an SNP, etc. Moreover, g-measure can 
also be g that denotes a vector or a matrix with each element being one of such genetic 
measures. On the other hand, we use a pheno-measure φ (shortly φ-measure) to refer a 
phenomenon indicator that is typically a categorical label or an integer number, indicat-
ing different subtypes or stages of a cancer or complex disease. Moreover, we may use 
a real-valued φ for a phenomenon that has a large category size or is directly featured 
by a continuous measure, e.g., survival length. Considering multiple phenomena jointly,  
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a φ-measure could also be a vector φφφ with each element being such an individual phe-
nomenon indicator.

A biomarker that identifies abnormal or normal is a g-measure g that demonstrates a 
significant difference between the case population and the control population, and a bio-
marker that indicates subtypes or stages is one g-measure g that demonstrates a significant 
characteristic underlying samples of each corresponding group, while a biomarker of prog-
nosis provides a good prediction on post-treatment survival. Some is a common biomarker 
that is useful to all the uses, while some particularly works for merely one or two of them.

Typically, a g-measure g is an SNP in GWAS or an expression value of a gene in expres-
sion profile. Moreover, a g-measure can be a vector g that consists of multiple SNPs in a 
segment of DNA sequence, where the segment corresponds to a gene or a noncoding RNA 
(lncRNA, circRNA, etc.) in consideration. In addition, g may consist of a number of fea-
tures obtained from mutation analysis. For analysing expression profile with the tumour 
versus its paired adjacent tissue, g is a two-dimensional vector that consists of simply the 
expressions of tumour and of the paired adjacent tissue, see page 36 in Ref. Xu (2015a) and 
Fig. 7 in Ref. Xu (2016). Even generally, a vector g may represent a bio-unit in consideration, 
which covers more than one gene, e.g., expressions of several mRNAs that group in a sig-
nature on a heart map or certain features that represent one biological functional module.

Conventionally, whether a g-measure acts as a biomarker was examined on a set of 
case–control samples. For examples, a gene expression biomarker for prognosis takes a 
high value to indicate positive to survival. Alternatively, there may also be a biomarker 
that takes a low value to indicate positive to survival. Traditionally, such a biomarker 
reflects a difference between samples of the g-measure without particularly taking a 
specific condition in consideration. Recently, multiple reasons appear to support that 
it would be better to examine a biomarker under certain conditions or in a particular 
environment.

First, the meaning of a biomarker identified unconditionally may change considerably 
in a particular environment. An example is one recent finding of CDX2 as a gene expres-
sion biomarker for prognostic in colon cancer (Dalerba et al. 2016). Without consider-
ing any condition, its high expression is preferred because the rate of 5-year disease-free 
survival with stage II CDX2-negative colon cancers was significantly lower than the rate 
with stage II CDX2-positive colon cancers. Interestingly, it was found that the rate of 
5-year disease-free survival with stage II CDX2-negative tumours who were treated with 
adjuvant chemotherapy became significantly higher than the rate with ones who were 
not treated with adjuvant chemotherapy, i.e., a low expression became preferred under 
the condition when adjuvant chemotherapy was treated.

Second, the role of some biomarker that is unable to be unconditionally identi-
fied will become detectable under a specific condition. One example is one recent 
study on IDH1-mutant glioma malignant progression (Bai et al. 2016). Considering all 
82 sequenced gliomas conditioning on that they all have IDH1 mutations, the role of 
rare mutations of NOTCH1 and NOTCH2 was identified, occurring within sequences 
encoding the EGF-like domains, which is consistent with inactivating mutations identi-
fied in squamous cell carcinomas.

Third, a comprehensive study demands jointly considering a biomarker that consists 
of multiple g-measures or even jointly considering multiple biomarkers, for which one 
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effective way is hierarchical formulation. In its simplest case, jointly considering two 
parts can be made subsequently by first considering one part and then considering the 
rest part conditioning on the first part. One example is the recent molecular analysis of 
gastric cancer that identifies four subtypes of gastric cancer by a binary tree with three 
layers (Cristescu et al. 2015), where subtypes MSS/TP53+ and MSS/TP53− are identi-
fied by an integrated biomarker named TP53 signature conditioning on an integrated 
biomarker named EMT signature and an integrated biomarker named MSI signature.

In a summary, a geno-phenotype study involves not only g-measures and φ-measures, 
but also a set e of enviro-measures (shortly e-measures) that specify certain condition 
or a particular environment underlying the study. In other words, we actually make an 
enviro-geno-pheno integrative study, which may be shortly denoted by a notation g −→

e
φ 

or g −→
e

φφφ, where each e-measure may represent one of treatments, patient characteris-
tics or g-measures jointly in consideration.

In the rest of this paper, we propose a generic approach as summarised in Table 1. First, 
the approach identifies one or several convex subsets in the joint domain of g-measures, 
φ-measures, and e-measures, with each subset representing a state of the bio-subsystem 
in our investigation. Shortly, such a state is called enviro-geno-pheno state (E-GPS) that 
acts as E-GPS biomarker, indicating ‘health/normal’ versus ‘risk/abnormal’ together with 
its associated enviro-geno-pheno conditions. Second, the approach makes association 
analysis from such E-GPS states to not only φ-measures or clinical phenotypes but also 
e-measures, towards various tasks that include but are not limited to differentiation, 
prognosis, subtype, and staging.

Even generally, g-measures may not only be limited to genetic measures but could be 
also other measures that serve as the inner ground of study, called ground measures (still 
g-measures shortly). In other words, the E-GPS approach is also applicable to those data-
mining tasks that can be formulated into the format g −→

e
φ.

Methods
Whether a living system survives healthily or a machine system runs normally is fea-
tured by its internal status that could be one of several types. One major type is ‘health/
good/normal’ or negative ‘−’, the other type is ‘risk/bad/abnormal’ or positive ‘+’ . There 
could be other types too, e.g., sub-health or slightly abnormal. In addition, there may be 
a type indicating ‘unknown/confusing’ or shortly ‘?’.

Specifically, a system status is measured via a set g of internal intrinsic or ground 
factors and a set e of environmental factors, as well as a set φφφ of the external behav-
iours or phenotypes that the system demonstrates correspondingly. Let G,E, and ��� to 
indicate the domain of g, e and φφφ, respectively, as illustrated in Fig. 1a, a system variate 
ξ ∈ Dgφe = G× E×��� represents an enviro-geno-pheno triple and is associated with a 
label, e.g., coloured green for ‘normal’ and coloured red for ‘abnormal’ as illustrated in 
Fig.  1b, that indicates an instance of the system status. Moreover, a subset Rs ⊂ Dgφe 
conceptually describes a possible relation among g, e, and φφφ. Not all possible subsets are 
interesting. We are interested in that Rs is convex and every element in Rs shares a same 
type of system status. The system behaves the same as long as ξ locates within Rs, namely 
Rs represents one Enviro-Geno-Pheno state (E-GPS ) in Dgφe, shortly denoted by s. The 
system behaviour is actually an external manifestation of one or several such states, as 
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Fig. 1  Enviro-geno-pheno state as biomarker, shortly E-GPS biomarker a Each element of Dgφe is generally a 
dg × de × dφ data cubic, where dg, de, and dφ are the dimensionalities of g, e, and φφφ, respectively. b When g, e, 
and φ are univariate, the case is illustrated by a scattering map, which is degenerated into an mg ×me ×mφ 
table that represents a discrete distribution when g, e, and φ take mg ,me, and mφ discrete values, respectively. 
c A convex set Rs acts as E-GPS biomarker, with the system status indicated by Type(s) and the boundary 
condition by COND(s) about genotypes, phenotypes, and environments by the boundary of Rs. d The possible 
system statuses are featured by E-GPS states that are learned from given samples, by minimising the criterion 
given by Eq. (1) or (4). e For a finite size of samples, we prefer a simple parametric model, e.g., by one of the 
two choices given in Eq. (7). f An E-GPS state corresponds to a convex subset with all its elements dedicated 
to the same status type, e.g., s11 is a biomarker of ‘green’, which maybe relaxed to require a probabilistic 
dedication, i.e., samples falling in a convex subset are mostly dedicated to a same status type. Contrastingly, 
a c-state is featured by that two status type compete samples, e.g., s01 and s10. g Prognosis analysis can be 
made per d-state, as addressed in Table 1 (3)(a). In addition, subtype analysis is made per state, with the 
top row indicating ‘green’ and ‘red’ samples and other rows indicating subtypes in binary values. The relation 
between the E-GPS state in consideration and each subtype is examined by their intersection. h We may 
compare the configuration of states jointly. In addition, the results of phenotype analysis per state can be 
combined, with help of the weighting probability p(j|sj) in accordance with the individual performance of 
each state. We may further make state transient analysis by estimating the transfer probabilities p(si |sj)
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illustrated in Fig. 1h. For each E-GPS state s, not only its associated type Type(s) indi-
cates the system status, for which we subsequently focus on Type(s) from one of values 
−,+, ? for simplicity, and the study can be rather straightforwardly extended to other 
sub-health types, but also the boundary of its corresponding convex set Rs describes the 
condition Bs = COND(s) = Boundary(Rs) to stay at this state, as illustrated in Fig. 1c.

Requiring that every element in Rs shares a same type of system status, an E-GPS state 
is featured by its dedication to one specific type of system status, and thus is shortly called 
a dedicating state or shortly d-state, e.g., the green d-state s(11) in Fig. 1f dedicates to a 
‘normal’ system status. To tolerate some error or disturbance, we may relax to require 
that every element in Rs gets a high enough probability to share a same type of system sta-
tus, that is, we consider the concept of d-state in a probabilistic sense, e.g., the red d-state 
s00 in Fig. 1f dedicates to one ‘abnormal’ system status. In addition to d-states, we may 
also need to handle subsets confused with different types or unknown types of samples, 
shortly we also regard such a subset as a confusing state or c-state, e.g., s10 in Fig. 1f.

Instead of adopting a standard routine that directly uses one or a set of g-measures as 
a biomarker of phenotypes that we aim at, we suggest to use each d-state as a biomarker, 
shortly, called E-GPS biomarker. Its difference from considering merely g measures as 
a biomarker lays in not just jointly considering g, e as a biomarker. Even without e, an 
E-GPS biomarker Rs ⊂ Dgφe degenerates to a binary relation or a subset of G×��� whilst 
we traditionally consider a special bi-relation called function F : G →��� or φφφ = f (g). 
Actually, widely studied is a linear or logistic function f (·), which is an example of merely 
considering g measures as a biomarker. In other words, an E-GPS biomarker extends such 
a function not only to a bi-relation but also further to a triple-relation Rs ⊂ Dgφe with e 
also taken in consideration, featured by the corresponding condition Cs that summarises 
the boundary conditions about genotypes and phenotypes as well as environments.

A representation of Rs is learned from a given set of samples, for which we may con-
sider a d-state s to be described by the convex hull of samples of the corresponding type, 
as illustrated in Fig. 1c. It is better to jointly consider a d-state of type ’+’ (shortly sd+ ) 
by the convex hull H̄d+ of red samples and a d-state of type ’−’ (shortly sd−) by the con-
vex hull H̄d− of green samples, as illustrated in Fig.  1d. There may be a nonempty or 
rather large intersection S̄∩ that should be cut away from both H̄d+ and H̄d−, for which 
we shrink both H̄d+ and H̄d− into a convex subset Hd+ ⊆ H̄d+ and a convex subset 
Hd− ⊆ H̄d− with minimal intersection S∩ but a maximal union S∪ such that the red sam-
ples and the green samples are best represented by Hd+ and Hd−, respectively, which is 
implemented by minimising the following criterion

As a whole, Hd+ and Hd− jointly divide Dgφe into four subsets

which includes those special cases of three subsets when S∩ becomes one of Hd+ and 
Hd−, and also those special cases of two subsets when Hd+ and Hd− are identical.

(1)J (sd+ , sd−) =
|S∩|

|S∪|
, S∩ = Hd+ ∩Hd− , S∪ = Hd+ ∪Hd− .

(2)
S = {S

d+
− , S

d−
− , S∩,¬S∪},

S
d+
− = Hd+ − S∩, S

d−
− = Hd− − S∩, S∩, and ¬S = Dgφe − S∪,
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No longer each subset S ∈ S is guaranteed to be convex. Without requiring such a 
convexity, we further consider each subset by the following ratio of minority

where there are a number nS of the samples in S ∈ S, with n+S  red samples and n−S  green 
samples, respectively. We may regard S as a d-state when rS goes below a threshold γs 
and nS is bigger than a minimum number n0. In this case, we expect to minimise rS for 
every S ∈ S. Possibly, there is a subset S with its rS being impossibly reduced below γs . 
Forcibly minimising such a rS will unfavourably increase the competing ratios of other 
subsets. Thus, we are better to leave this rS away from being minimised. Considering 
every S ∈ S jointly, we minimise the following criterion

where ε(u, v,w) ≥ 0 is a function with

That is, a smaller value J prefers a smaller rS or equivalently a d-state. Moreover, dS 
reflects a degree of separation between the samples inside and outside S. It follows from 
∂ε
∂v ≤ 0 that a smaller value J prefers bigger dS. Furthermore, ηS reflects a degree of bal-
ance on the numbers of samples over subsets in S, e.g., we may consider the following 
entropy

It follows from ∂ε
∂w ≤ 0 that a smaller value J prefers bigger ηS or a configuration with a 

least number of states and also with samples dedicated to the states in a balanced way.
In implementation, there could be different choices for representing Hd+ and Hd−. 

Typically, a finite size of samples restrains our preference to a simple parametric model. 
Two simplest choices are given as follows:

For examples, Choice (a) is illustrated by the dashed circles in Fig. 1e, and Choice (b) 
is illustrated by the greyed planes in Fig.  1e. The former choice is similar to the gen-
eral case in Fig. 1d, parameterised by a least number of free parameters to be estimated 
by minimising the criterion given by Eqs. (1) or (4). However, there are two limitations. 
First, the spherical shape is not suitable for representing a sample population in an elon-
gated configuration featured by some orientation. Second, there may be some subset in 
Eq. (2) that is not convex and thus loses the robustness of a convex set.

(3)rS =
min{n+S , n

−
S }

nS
, nS = n+S + n−S ,

(4)
J (S) =

∑

S∈S, s.t. nS≥no & rS≤γS

ε(rS , dS , ηS),

(5)
∂ε

∂u
≥ 0,

∂ε

∂v
≤ 0,

∂ε

∂w
≤ 0.

(6)ηS = −
1

#S

∑

S

nS
∑

S nS
ln

nS
∑

S nS
or ηS = −

1

#S

∑

S

[

nS
∑

S nS

]2

.

(7)(a) a hyper-sphere parameterized by a location vectorm and a radius a,

(b) a hyper-plane parameterized by a location vectorm and a normal vector a.
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Though the first limitation may become broken with hypersphere replaced by hyper-ellipse, 
not only it largely increases the number of free parameters and thus becomes prone to overfit-
ting but also some subset in Eq. (2) may still not be convex. Favourably, Choice (b) gets a small 
incremental in free parameters, i.e., simply with the scalar a replaced by a vector a, such that 
the second limitation is overcome and the first limitation is at least partially overcome. Spe-
cifically, Dgφe is partitioned into at least two convex subsets and at most four convex subsets 
by two hyper-planes, and the resulted subsets may also have some orientation. Again, we may 
estimate the two hyper-planes by minimising the criterion given by Eqs. (1) or (4).

Illustrated in Fig. 1f is a simple example that Dgφe is partitioned into four convex sub-
sets S11, S01, S10, and S00 by two lines. Specifically, the subset S11 represents a d-state 
s11 as good biomarker of ’green’ (i.e., normal), though unconditionally using g as a bio-
marker cannot differentiate the normal versus the abnormal. As a d-state, samples of the 
state s11 are all dedicated to ‘green’, while the state s00 is almost a d-state that corresponds 
to the subset S00 that consists of mostly red samples. The other two subsets S01 and S10 
act as the c-states. Relaxing two lines in Fig. 1f to become adjusted freely, an optimal 
partition may be obtained by minimising the criterion given by Eq. (4).

This approach differs from the conventional linear discriminating analysis not just in that 
one hyper-plane is replaced by two hyper-planes, but also in that the classification error is 
replaced by the dedication degree of samples while the c-states are excluded from disturbing 
the d-states. Then, the samples of each c-state maybe further divided into two to four convex 
subsets using this approach too, e.g., the subset S01 in Fig. 1f can be further divided into two 
d-states still within Dgφe. Recursively doing so, we are led to a tree as illustrated in Fig. 2e. As 
a whole, red samples are represented jointly by a number of d-states, either in a probabilistic 
combination as illustrated in Fig. 1h or via a union of convex subsets while this union may be 
no longer convex. Similarly, red samples are represented by a number of d-states too.

To avoid overfitting, in Eq. (4) we impose a lower bound on the number of samples in each 
d-state. In addition, we may merge samples of adjacent c-states to form a big c-stage before 
dividing one c-state into subsets on the next level, as illustrated in Fig. 2f. For a small size of 
samples, we may further reduce the number of free parameters by restraining two hyper-
planes in parallel, i.e., reduce one orientation vector a into a scalar a to denote the distance 
between two parallel hyper-planes. Learning may be simplified into a two-stage implementa-
tion as illustrated in Fig. 2c, d. First, the normal direction of parallel hyper-planes is learned 
either directly by support vector machine (SVM) (Suykens and Vandewalle 1999; Suykens 
et al. 2002) as shown in Fig. 2c or with help of Fisher discriminative analysis (FDA) as shown 
in Fig. 2d. Second, samples are projected onto the normal direction and further divided into 
three subsets by minimising a simplified version of J(S) given by Eq. (4), as shown in Fig. 2a, b.

In Eq. (3), one sample within S will contribute one count to either n+S  or n−S  regardless 
of where it locates. We may consider that each sample x ∈ S is associated with weight 
coefficients w+(x) for red samples and w−(x) for green samples, based on which we 
modify n+S  and n−S  in Eq. (3) into the follow ones:

(8)

n+S =
∑

each red sample x∈S

w+(x),

n−S =
∑

each green sample x∈S

w−(x).
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There could be two types of choices for getting w+(x) and w−(x). One based on how well 
x belongs to the corresponding state. A weight tends to be small if x marginally belongs 
to the state (e.g., locating near the boundary of S) but large if x firmly belongs to the state 
(e.g., locating deep inside S). The other bases on distributions p(x|+) of red samples and 
p(x|−) of green samples may be given by nonparamatric kernel estimation as follows:

Fig. 2  Learning E-GPS- and E-GPS-based analysis a Learning E-GPS with J(S) given by Eq. (4) simplified into 
J(a1, a2), where ηS is given by Eq. (6) and � ≥ 0 is a weight for the role of ηS. b Two lines in special cases with 
only two free parameters. c We may get three convex subsets by considering two parallel lines featured by 
three free parameters. One way for learning the two lines is using support vector machine (SVM) (Suykens 
and Vandewalle 1999; Suykens et al. 2002) for several different choices of the margin a among which we pick 
the best one according to J. d Alternatively, two parallel lines may also be obtained in two steps. First, we find 
the normal direction of the two lines by SVM and then project all the samples orthogonally onto the direc-
tion. Second, we treat the projected samples in the same way as in (b). Instead of SVM, the normal direction 
may also be determined by either Fisher discriminative analysis (FDA) or principal component analysis (PCA). 
e Recursively, we perform the division as illustrated in (c) or (d) on each c-state, ..., so on so forth, until all the 
remaining c-states are noncuttable, see Table 1(1)(c). Finally, we get a tree with each d-state (e.g., s11) as a leaf. 
f Defragment is made from time to time by merging adjacent d-states s2, s3, s4 and merging c-states s5, s6, see 
Table 1(3)
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Table 1  E-GPS states and E-GPS approach

Term Description

(1) Identification of system status by E-GPS states
(a) E-GPS state It is a convex set Rs ⊆ Dgφe with all its elements sharing the same status 

type, e.g., the state s11 in Fig. 1f, and the probability that the system visits 
this state (i.e., within Rs) is bigger than a threshold, i.e., the state is not 
rare. Empirically, the percentage of a given set of samples falling in Rs 
should be larger enough

(b) Prob. E-GPS state (d-state vs. 
c-state )

It is a state that is not rare but prob. (probabilistic) in a sense that each 
element in Rs is either Type ‘+’ in a number n+S  or Type ‘−’ in a number n−S
, in two categories: 

d-state (Dedicated state): max{n+S , n
−
S } is significantly bigger than 

min{n+S , n
−
S }. Empirically, samples falling in Rs are mostly dedicated to a 

same status type, e.g., the state s00 in Fig. 1f. 
c-state (Confusing state); otherwise, i.e., two status types compete sam-

ples in Rs, e.g., the states s10 and s01 in Fig. 1f

(c) c-state (cuttable vs noncuttable) It is a c-state with at least one convex subset that is able to be cut off as 
a d-state, e.g., the state s01 in Fig. 1f; otherwise the c-state is said to be 
noncuttable under the current settings of Dgφe, e.g., the state s10 in 
Fig. 1f

(d) Learning configuration of states Overall, a set of at least one d-state and c-states (if any) is learned from 
a given set of samples, featured by not only these states but also their 
configuration that encodes the locations and mutual relations of these 
states, as illustrated in Fig. 1h

(2) Refinements of E-GPS states
(a) cutting Cut a cuttable c-state by linear separation, e.g., SVM (Suykens and Vande-

walle 1999; Suykens et al. 2002) or FDA by Eqs. (11) and (12) in Ref. Xu 
(2015a), via refining condition, e.g., the red line cuts s01 in Fig. 2f, which 
results in one convex subset as a d-state and one size-reduced c-state 
that may be still cuttable c-state

(b) merging Merge adjacent d-states if their union is still convex, e.g., merging s2, s3, s4 
in Fig. 2f. In addition, merge adjacent c-states, e.g., s5, s6 in Fig. 2f

(c) growing Grow each d-state s with Type(s) =‘green’ by including those adjacent 
’green’ samples if the enlarged subset is still convex, and also grow each 
d-state s with Type(s) =‘red’ by including those adjacent ’red’ samples if 
the enlarged subset is still convex

(d) treating Use additional conditions (e.g., one more variable is added to φ) such that 
more ’green’ samples in the c-states become adjacent to and able to be 
re-allocated into some d-states in the above ways

(3) Conditional phenotype analyses based on E-GPS states
(a) analysis per d-state Prognosis analyses test whether max{n+S , n

−
S } differs from min{n+S , n

−
S } 

significantly by χ2 test or Fisher exact test to identify whether this state 
is good for prognosis, while the boundary of this state indicates the 
conditions under which the judgement is made. Moreover, prognosis 
of a unlabelled sample may be made by an one-class classifier obtained 
from these conditions

Survival analyses plot K-M curves on samples with survival record and 
make the log rank test or the Cox proportional hazards test

Subtype analyses stratify samples of this state into each subtype, test the 
enrichment of each subtype in this state, plot K-M curves on each strati-
fication, and examine the correlation or the intersection of each subtype 
to good and bad prognosis, as shown in Fig. 1h

(b) analysis cross d-states Differentiation test on whether there is a significant difference pair-wisely 
either between samples of different d-states or between samples 
associated with different values of a phenotype, in one of the following 
manners:

∗ A t-test when we ignore e and merely consider a univariate g;

∗ A multivariate test, e.g., Hotelling test Hotelling (1931), BBT test [see 
Table 6 in Ref. Xu (2015a)], and property-oriented test [see Algorithm 1 
in Ref. Xu (2016)];

∗ Model-based test proposed by Eqs. (29–31) in Ref. Xu (2015a);
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where n+, n− are the total number of red and green samples, respectively, d is the dimen-
sion of x, and h > 0 is a small smoothing parameter. One simple example of K (

x−ξ
h

) is a 
Gaussian distribution with its mean ξ and the covariance hdI.

As summarised in Table 1, the E-GPS approach is featured by identifying the system 
status via the E-GPS states that are learned from a given set of samples as addressed pre-
viously in this section and then further refined cutting, merging, growing as addressed in 
Table 1(2). Subsequently, we conduct various conditional phenotype analyses based on 
the E-GPS states, as summarised in Table 1(3).

Discussions
The E-GPS approach may find many uses in genomic biomarkers and cancer genetics, 
of which several applications are summarised in Table 2, including not only expression 
analyses and transcriptomic analysis of mRNA, lncRNA, and circRNA but also whole 
genome sequencing-based joint SNV analyses, mutation analyses, and methylation anal-
yses, etc.

Additionally, it is also interesting to notice those degenerated situations with phe-
notype information unknown, e.g., all the red or green coloured points are turned 
into black dots. In such cases, all the states are degenerated into a same type, namely 
a unknown state or shortly called U-state. Each U-state actually represents a cluster of 
samples without any label information, and the task of identifying states is degenerated 
into clustering analysis, for which one possible method is learning a mixture of multiple 
local subspaces, e.g., see Algorithm 5 in Ref. Xu (2015b). In addition, we may consider 

(9)

p(x|+) =
1

hdn+

∑

each red sample ξ

K

(

x − ξ

h

)

,

p(x|−) =
1

hdn−

∑

each green sample ξ

K

(

x − ξ

h

)

,

Table 1  continued

Term Description

∗ Logistic- or Cox-regression. On the lefthand of 
η(φt) = bT gt + aT et + c + εt, we test whether one or more of coeffi-
cients of b are zero and whether one or more of coefficients of a (e.g., by 
the score test or the Wald test) to examine whether the corresponding 
variables take roles significantly

Staging that is related to subtypes but different, staging involves subtypes 
in a temporal order. The later stage is usually more serious than the 
earlier stage, which may be learned via the transfer probabilities p(si |sj) 
cross the states in Fig. 1h

Cross-state integration by comparing the configuration of states to 
enhance the differentiation study above. Moreover, cross-state combi-
nation can further provide better performance, as illustrated in Fig. 1h. 
Given the output measure ζj,t (e.g., p value, classification error, and pre-
dicted regression) for a particular sample t, we may get one weighted 
average ζt =

∑

j ζj,tp(sj |t), as well as a combined classification rule 
p(+|t) =

∑

j p(+|sj)p(sj |t) > p(−|t) =
∑

j p(−|sj)p(sj |t)
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Table 2  Potential applications

Task Study description

(a) Expression data differentiation We find d-states as biomarkers by examining one ga vs ea (e.g., 
one ga or gb) by 2D scattering map. Also, one ec can be jointly 
examined with one map for ec = 1 and one map for ec = 0

(b) Mutation analysis We examine one gD vs ec. First, get a 2× 2 table for gD. Then, 
the table is split into a 3D one with one slice for ec = 1 and 
the other for ec = 0. Also, we may use one additional gD as ec 
to get a 3D table. Moreover, each slice may be further split by 
considering a new ec. All the resulted slices are analysed in a 
way similar to Table 1(3)(a)

(c) SNP analysis The situation is similar to the above except that a 2× 2 table 
becomes a 2× 3 table in consideration of gD in a tri-nary val-
ues to denote AA, Aa, and aa. When using another SNP as ec, 
its tri-valued gD is replaced by a binary one that takes either 0 
if the sample has no SNP on this site or 1 otherwise

(f ) High-risk samples Based on the above studies, we estimate the posteriori p(+|x) 
per sample x and pick one with its value higher than a 
threshold as a high-risk sample, which is directly applicable 
to expression data. For sequencing data and particularly for 
finding SNPs, it difficult to get p(+|x) because merely a few 
samples have variants on a particular site of gc. Instead, a 
sample is regarded as risk simply when there is a variant on 
the site of gc or an enough number of variants on the sites of 
multiple SNPs

(g) Expression-sequencing echoing We obtain d-states and trees on expression data and sequenc-
ing data, and examine whether the results from two types of 
data in accordance with each other.

(h) Expression-sequencing combining (ESC) test Assume the null H0 holds on both the E-side and the S-side 
and using E¬H∗ and S¬H∗ to denote making alarm on its cor-
responding side, we get p(E¬H∗ , S¬H∗ |s) = p(E¬H∗ |S¬H∗ |s)pS 
with pS = p(S¬H∗ |s) being the p value obtained on the 
S-side and p(E¬H∗ |S¬H∗ , s) ≈ Card(BE )/Card(BS), being the 
probability of rejecting H0 on the E-side conditioning on that 
H0 is rejected on the S-side, where BS consists of biomark-
ers on which H0 is rejected significantly on the S-side, and 
BE ⊆ BS consists of biomarkers on which H0 is also regarded 
as significantly rejected on the S-side

(i) E-GPS based Integration Integration may also be made by examining one ga from 
expression of a gene versus gc from multiple SNPs within the 
DNA sequence of the gene (e.g., either the number of or the 
average score of multiple SNPs)

* General settings
g:     each of its elements is a g-variable that could be

ga a real variable for expression of an RNA unit, e.g., either of mRNA, lncRNA, and circRNA;

gb  a real variable for a signature expression (i.e., a collective expression of a set of RNA-units);

gc a discrete label for an SNP in DNA sequence (could be multiple SNPs per an RNA unit);

gD a binary variable that indicates whether there is a mutation within a bio-unit sequence (e.g., gene, pathway, 
etc). There are usually multiple variables for different type mutations

φφφ:    each of its elements is a φ-variable that could be

φa a binary variable that indicates ‘case vs control’ or ‘abnormal vs normal’ ;

φb a binary or discrete variable that indicates clinical features;

φca discrete label that indicates one of subtypes or grades or stages;

φD a real variable that indicates the occurrence of an event (e.g., survival time)

e:     each of its elements is an e-variable that could be

ea a g-variable that acts as a condition for our examination;

eb a φ-variable that act as a condition for our examination;

ec  a binary variable that indicates whether a treatment is made, e.g., adjuvant chemotherapy;

eD an environmental variable, in either discrete (e.g., sex M/F) or real (e.g., age)
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the binary factor analysis that describes 2m states with the number of free parameters 
significantly reduced, e.g., see Algorithm 6 and Algorithm 7 in Ref. Xu (2015b).

Without considering phenotype information, the task nature will become really differ-
ent from the E-GPS approach, in which phenotype analysis takes a core role in various 
tasks. We may use unsupervised learning as a preprocessing stage and the resulted clus-
ters as one initial state configuration, on which the E-GPS study is further performed to 
take phenotype information in consideration.

In many biomarker searching tasks, the data may be mixed up by samples with phe-
notypes available and samples with phenotype unknown or partially missing. Consider-
ing unlabelled data may help to improve performances, which relates to semi-supervised 

Fig. 3  A possible extension: getting E-GPS biomarkers by deep learning. a Considering many genes and 
multiple conditional measures in a bio-system (e.g., a pathway) that consists of far more than a few genes, we 
may consider a multiple-layer network by deep learning, such as stacked RBMs (Hinton and Salakhutdinov 
2006) and LMSER (Xu 1991, 1993) featured by unsupervised learning for a hierarchical abstraction of biomark-
ers. b According to Turing–Church thesis, the class of partial recursive functions is precisely the functions that 
can be computed by Turing machines, which provide an interesting perspective for understanding deep 
learning. The basic functions are involved within each layer, and the operators of composition and primitive 
recursion correspond a forward processing across different layers (namely what is usually called ‘deep’), while 
the minimisation operator corresponds a recurrent process from upper layers back to lower layers. From this 
perspective, we speculate that the class of functions performed by deep neural networks is also the class of 
functions that can be computed by Turing machines, for which ‘deep’ and ‘recurrent’ are indispensable



Page 13 of 14Xu ﻿Appl Inform  (2016) 3:4 

learning, e.g., see Algorithm  9 in Ref. Xu (2015b) for semi-supervised clustering and 
Algorithm 11 in Ref. Xu (2015b) for semi-supervised binary factor analysis.

Another possible extension is getting the E-GPS biomarkers by deep learning multi-
ple-layer networks, especially when we consider many genes and multiple conditional 
measures in a bio-system (e.g., pathway) that consists of far larger than a few genes. As 
illustrated in Fig. 3a, examples include stacked restricted Boltzmann machines (RBMs) 
(Hinton and Salakhutdinov 2006) and Least mean square error reconstruction (LMSER) 
(Xu 1991, 1993). Interestingly, the class of functions performed by deep neural networks 
is here speculated to be equivalently the class of functions that can be computed by 
Turing machines, from the perspective of partial recursive functions.

Conclusion
In the joint domain Dgφe of geno-measures, pheno-measures, and enviro-measures, 
those elements that locate adjacently in a convex subset are identified as forming a state 
as biomarkers. In place of a conventional biomarker that uses one or multiple g-meas-
ures as a biomarker unconditionally, this E-GPS approach provides a new biomarker 
analysis tool that considers not only geno-variables conditionally on certain focused 
domain but also the joint enviro-geno-pheno effect, as well as the E-GPS state based 
phenotype analyses such as differentiation, prognosis, subtype, staging, and pathogenic 
progression. Specifically, a two-stage method is proposed for learning these E-GPS 
states, and several possible applications are suggested. Moreover, it is further addressed 
that such an E-GPS approach facilitates integrative study of expression and sequencing.
Author details
1 Department of Computer Science and Engineering, Centre for Brain‑inspired Computing and Bio‑Health Informatics, 
The School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, SEIEE Building 3, 800 
Dongchuan Road, Minhang District, 200240 Shanghai, China. 2 Department of Computer Science and Engineering, The 
Chinese University of Hong Kong, Hong Kong, China. 

Acknowledgements
This work was supported by the Zhi-Yuan chair professorship start-up Grant from Shanghai Jiao Tong University.

Competing interests
The authors declare that they have no competing interests.

Received: 17 April 2016   Accepted: 20 July 2016

References
Bai H, Harmancı AS, Erson-Omay EZ, Li J, Coşkun S, Simon M, Krischek B, Özduman K, Omay SB, Sorensen EA (2016) Inte-

grated genomic characterization of idh1-mutant glioma malignant progression. Nat Genet 48(1):59–66
Cristescu R, Lee J, Nebozhyn M, Kim K-M, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K (2015) Molecular analysis of gastric 

cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21(5):449–456
Dalerba P, Sahoo D, Paik S, Guo X, Yothers G, Song N, Wilcox-Fogel N, Forgó E, Rajendran PS, Miranda SP (2016) Cdx2 as a 

prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 374(3):211–222
Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 

313(5786):504–507
Hotelling H (1931) The generalization of student’s ratio. Ann Math Stat 2(3):360–378
Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300
Suykens JA, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J, Suykens J, Van Gestel T (2002) Least squares support 

vector machines. World Scientific Publishing, Singapore
Xu L (1991) Least mse reconstruction for self-organization:(i) multi-layer neural nets and (ii) further theoretical and 

experimental studies on one layer nets. In: Proceedings of the international joint conference on neural networks-
1991-Singapore. pp 2363–2373



Page 14 of 14Xu ﻿Appl Inform  (2016) 3:4 

Xu L (1993) Least mean square error reconstruction principle for self-organizing neural-nets. Neural Netw 6(5):627–648
Xu L (2015a) Bi-linear matrix-variate analyses, integrative hypothesis tests, and case–control studies. Appl Inform 

2(1):1–39
Xu L (2015b) Further advances on bayesian ying yang harmony learning. Appl Inform 2(5):1–45
Xu L (2016) A new multivariate test formulation: theory, implementation, and applications to genome-scale sequencing 

and expression. Appl Inform 3(1):1–23


	Enviro-geno-pheno state approach and state based biomarkers for differentiation, prognosis, subtypes, and staging
	Abstract 
	Background
	Methods
	Discussions
	Conclusion
	Acknowledgements
	References




