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Background
In the last decades, much progress has been made to the data open sharing, especially in 
the neuroimaging studies of brain function and disease (Russell et al. 2014). On the one 
hand, the increasing big data sharing has profound impact on research in cognitive neu-
roscience and psychiatry, resulting in advances in the diagnosis and treatment of psychi-
atric and neurological disease. On the other hand, the big data sharing is able to facilitate 
development of advanced analysis methods, which in turn help find the new biomarkers 
in brain diseases. The structural covariance (SC) model is such a method that has its 
potential value in understanding of various psychiatric conditions (Aaron et al. 2013).

The SC is a phenomenon that inter-individual differences in the structure of a brain 
region often covary with the inter-individual structural difference of other brain areas. 
It has been recognized that the genetics, behavior, and plasticity together contributed to 
covariance between brain areas (Krista et al. 2009; William et al. 2001). The SC is usu-
ally characterized by the linear dependence between two large samples of human data-
sets using the product-moment correlation coefficient, the Pearson’s r. The method has 
been widely employed to investigate the development of brain structures across lifespan 
(Brandon et al. 2010), and also the neurodegenerative disorders, such as the Alzheimer’s 
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disease (Yong et al. 2008) and Schizophrenia (Serge et al. 2005). Question surrounding 
the SC in autism spectrum disorder (ASD) still remains.

The ASD is a neurodevelopment disorder characterized by deficits in communication 
and social interaction, along with repetitive patterns of behavior and interests. Neuroim-
aging studies have demonstrated that dysfunction of triple networks [including central 
executive network (CEN), salience network (SN), and default modal network (DMN)] 
were associated with ASD (Vinod et al. 2011). To the best of our knowledge, there were 
no studies investigating the SC of those networks, especially their dynamic configuration 
across ages in ASD. The lack of investigation of the SC in ASD is probably due to the 
limited number of participants recruited in previous studies. Therefore, in the current 
study, we collected big datasets from the Autism Brain Imaging Data Exchange (ABIDE). 
Then we employed the SC modal to investigate the SC and topological properties of the 
triple networks and their development across ages in ASD.

Methods
Participants and data preprocessing

The datasets supporting the conclusions of this article are available from the ABIDE 
(http://fcon_1000.projects.nitrc.org/indi/abide/) database. The datasets involved 307 
ASD and 337 typical controls (TC). Participants were further classified into four groups 
based on different age cohorts. They are group 1 (59 ASD, 63 TC, age, 6–11 years), group 
2 (109 ASD, 114 TC, age, 11–15 years), group 3 (46 ASD, 52 TC, age, 15–18 years), and 
group 4 (93 ASD, 107 TC, age, >18 years). Written informed consent was obtained from 
all participants. Experimental protocols were approved by the local Institutional Review 
Boards.

All participants were scanned using a 3 Tesla SIEMENS scanner following diagnostic 
assessment. Subjects were asked to relax and look at a white cross-hair against a black 
background. The anatomical image was then acquired for each participant.

Data preprocessing was conducted using SPM8 software. First, all T1-weighted ana-
tomical images were manually reoriented to place the anterior commissure at the origin 
of the three-dimensional Montreal Neurological Institute (MNI) space. The images were 
then segmented into gray matter, white matter, and cerebrospinal fluid (John et al. 2005). 
A diffeomorphic non-linear registration algorithm was used to spatially normalize the 
segmented images (John et al. 2007). This procedure generated a template for a group 
of individuals. The resulting images were spatially normalized into the MNI space using 
affine spatial normalization, and resampled into 1.5 × 1.5 × 1.5 mm3. Finally, the result-
ing gray matter images were smoothed with a 6 mm full-width half-maximum (FWHM) 
isotropic Gaussian kernel.

Structural connectivity estimation

Nine coordinates in MNI space were obtained from a previous study (Lucina et al. 2011). 
The brain areas corresponding to those coordinates were left and right fronto-insular 
cortex (lFIC/rFIC), anterior cingulate cortex (ACC), left and right dorsolateral prefron-
tal cortex (lDLPFC/rDLPFC), left and right posterior parietal cortex (lPPC/rPPC), ven-
tromedial prefrontal cortex (VMPFC), and posterior cingulate cortex (PCC). The lFIC/
rFIC and ACC belong to SN. The lDLPFC/rDLPFC and lPPC/rPPC belong to CEN. The 
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VMPFC and PCC belong to DMN. Night spherical regions of interests (ROIs) were gen-
erated with radius of 8  mm based on those coordinates. Those ROIs were multiplied 
with a gray matter mask to exclude voxels outsides the gray matter. The gray matter den-
sity value was averaged across voxels within each ROI for each participant. The SC anal-
ysis was then conducted as follows:

The Pearson correlation analysis was performed between pairs of ROIs to characterize 
the SC in ASD and HC. The permutation test was employed to determine the statistical 
significance level. Briefly, we first calculated the between-group difference of the correla-
tion value. We then randomly assigned each participant to one of the two groups with 
the same size as the origin groups of ASD and HC. This randomization procedure was 
repeated for 10,000 permutations, which generated a null permutation distribution. For 
each permutation, the new between-group difference was calculated. We then assigned 
a p value to the between-group difference by computing the proportion of differences 
exceeding the null distribution values. The multiple comparisons were corrected using 
an exploratory threshold of 1/N (here, N is number of edges, which is 9*8/2). Notably, 
the effect of sites and full IQ were regressed out before the Pearson correlation analysis. 
The whole procedure mentioned above was repeatedly conducted on each of the four 
groups.

Topological properties calculation

Within each age cohort, we computed the topological properties of SC networks includ-
ing clustering coefficient, shortest path length, local efficiency and global efficiency, for 
ASD group and HC group, and compared those properties between the two groups.

The connectivity sparsity was firstly employed to threshold SC network. Connectivity 
sparsity was computed as number of existing edges divided by maximum possible num-
ber of edge in a network. Here, a connectivity sparsity of 40 % was used to ensure that 
all SC networks were full connected. We then computed those topological properties for 
each SC network.

The clustering coefficient of a node i is calculated as:

where wij is the weight between node i and node j; ki is the degree of node i; N is the 
number of nodes. The clustering coefficient of a network is computed as:

This measure indicates the extent of local interconnectivity or cliquishness in network.
The characteristic shortest path length of a network is defined as:
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where Lij is the path between node i and node j with shortest length. This measure quan-
tifies the ability for information propagation in parallel.

The global efficiency of a network is computed as:

which is a measure of parallel information transformation.
While the local efficiency of a network is defined as:

where Eglobal(Gi) is the global efficiency of the neighborhood sub-graph Gi of the node 
i. The local efficiency can be understood as a measure of fault tolerance of the network, 
indicating how well each sub-graph exchanges information when the index node is 
eliminated.

The statistical test was conducted using permutation test, as we did in the ‘‘Partici-
pants and data preprocessing’’ section. The statistical level of p < 0.05 was considered as 
significant.

Results
The gray matte density value of each ROI strongly covaries with the values of rest ROIs 
in both ASD group and HC group (Fig. 1a). The SC value within SN was much higher, 
compared to those within DMN and CEN, and also those between the three networks 
(Fig.  1a). Further, ASD had significant reduced SC value between lPPC and VMPFC 
(Fig. 1b).
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Fig. 1  The SC connectivity matrices across ages. The SC connectivity matrices in ASD and HC (a), and the 
statistical differences in SC value between ASD and HC (b). The value in the matrix represents the extent to 
which one brain area covary with other areas. Notably, these results were obtained by including all partici-
pants in ASD group and HC group
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We then observed different SC pattern between distinct age cohorts. In group 1, ASD 
had increased SC between ACC and lFIC, between ACC and VMPFC, and between rFIC 
and lFIC. In group 2, ASD had reduced SC between lPPC and rFIC, lFIC and VMPFC, 
between ACC and rFIC, lFIC. In group 3, increased SC was found in ASD between rPPC 
and rFIC. While in group 4, decreased SC was observed in ASD between ACC and lFIC, 
between VMPFC and lFIC (Fig. 2).

We further found that patients with ASD had significantly higher clustering coef-
ficient at early adolescent, and lower global efficiency at late adolescent, compared to 
HC (Fig. 3). There was no difference in characteristic shortest path length and local effi-
ciency between ASD and TC within each cohort.

Fig. 2  The SC connectivity matrices at different age cohorts. The SC connectivity matrices in ASD and HC, 
and the statistical differences in SC value between ASD and HC in group 1 (6–11 years), group 2 (11–15 years), 
group 3 (15–18 years), and group 4 (18–58 years)

Fig. 3  Topological difference between ASD and HC. The difference (ASD vs. HC) in clustering coefficient and 
global efficiency of SC network in group 1 (6–11 years), group 2 (11–15 years), group 3 (15–18 years), and group 
4 (>18 years). The red circles indicate the significant difference between ASD and HC. The gray zones were the 
95 % confidence intervals, which were obtained from the null permutation distribution
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Discussion
In the current study, we observed dynamic SC reorganization of triple networks, espe-
cially the rFIC, by employing the SC model. It has been demonstrated that the rFIC, a 
critical component of SN, mediates interaction between CEN and DMN (Vinod et  al. 
2010; William et  al. 2007). A developmental study had shown that the maturation of 
rFIC connectivity plays a critical role in the brain network maturation to support com-
plex cognitive processes (Lucina et al. 2011). Those results probably suggested abnormal 
development of cognitive processes in ASD.

More specifically, we firstly found decreased SC between lPPC and VMPFC, which 
might suggest impaired executive function in ASD (Timothy et al. 2006). Interestingly, 
we then observed dramatically distinct SC patterns, especially the connectivity of rFIC 
in ASD across age cohorts. The findings here provided structural substrates for func-
tional deficits of rFIC observed in ASD (Jyri-Johan et al. 2010), and might suggest spe-
cific mechanism underlying ASD in different age cohort. Additionally, a lower global 
efficiency in ASD was observed at specific age cohort, indicating that the altered infor-
mation communication pattern within the triple networks was affected by ages. Overall, 
we were the first to report the dynamic SC reconfiguration of the triple networks in ASD 
using SC modal, and highlighted the importance of age effect in autistic research.

Conclusions
This study investigated the dynamic changes of SC and its topological properties as 
function of age cohorts in patents with ASD by employing a large dataset. The results 
suggested the crucial role of triple network abnormalities in pathology of ASD at specific 
age ranges, and highlighted effect of age on autistic development.
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