
A spatial‑constrained multi‑target 
regression model for human brain activity 
prediction
Zhenfu Wen1,2 and Yuanqing Li1,2*

Background
One important goal of neuroscience is to understand the relationship between external 
visual stimulus and human brain activity. We can gain the understanding by analyzing 
fMRI data from the mirror perspectives of neural decoding and neural encoding (Nase-
laris et al. 2011). In the view of neural decoding, we often attempt to predict informa-
tion of stimuli from measured brain activity. Numerous studies have explored human 
vision using decoding models (Haxby et al. 2001, 2014; Norman et al. 2006). Conversely, 
in the view of neural encoding, we try to model how brain activity varies corresponding 
to external stimulus and attempt to predict brain activity from stimuli features. Previous 
studies have indicated that encoding models are more efficient in describing the func-
tion of brain areas than decoding models (Naselaris et al. 2011), suggesting the advan-
tages of analyzing fMRI in the encoding view.

In recent years, voxel-based encoding models were proposed and caught much atten-
tion (Kay et al. 2008). A typical encoding model can be divided into two parts. The first 
part tries to find a feature space to describe the external stimulus. The second part cor-
responds to the construction of regression models, which uses the stimulus features to 
predict corresponding brain activity. Lots of effort were taken to find ways to represent 
the stimulus images. Previous studies used Gabor wavelet pyramid model (Kay et  al. 
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2008; Vu et al. 2011), two-layer sparse coding model (Güçlü and van Gerven 2014), and 
convolutional neural networks (Agrawal et al. 2014) to extract features that can repre-
sent natural images effectively. However, fewer studies focused on efficient regression 
model construction.

In the regression part of encoding, regularized linear regression models such as 
lasso (Kay et al. 2008), ridge regression (Güçlü and van Gerven 2014) and graph-con-
strained elastic net (Kay et  al. 2008; Schoenmakers et  al. 2013) were most commonly 
used. Recently, a more advanced sparse nonparametric regression model was proposed 
(Vu et al. 2011). In spite of the successful prediction of brain activity using these mod-
els, one drawback of these voxel-wise models in previous studies is that the response 
of each voxel is modeled separately; thus, the estimated parameters of different voxels 
are independent. As a result, these regression models cannot fully employ the correla-
tions between voxels and brain regions. Numerous studies have indicated the benefits of 
taking the spatial smoothness of fMRI data into account. For example, in the decoding 
models, when the spatial structure of the data is considered, higher decoding accuracies 
and more informative and interpretable results can be obtained (Michel et al. 2011; de 
Brecht and Yamagishi 2012). In functional brain mapping, combining local brain activ-
ity often results in more consistent patterns across subjects (Kriegeskorte et al. 2006). 
All these results suggest that spatial structure of fMRI data should also be considered in 
encoding models.

In this paper, we focus on the part of regression models construction in the encoding 
models, i.e., given the features of external stimuli images, we try to construct a regres-
sion model that can predict internal brain activity efficiently. We employ the spatial 
smoothness property of fMRI data and construct a multi-target linear regression model 
(Evgeniou and Pontil 2004, Argyriou et al. 2008) in which the activities of local adjacent 
voxels will be predicted simultaneously, and a spatial constraint is proposed to restrict 
the model parameters. To demonstrate the effectiveness of this model, we compare the 
brain activity prediction performances of the proposed method with two state-of-the-art 
voxel-wise models on a public fMRI dataset.

Methods
Data description

The publicly available fMRI data (Kay et al. 2011) were used for model validation; this 
dataset is widely used in comparing models (Güçlü and van Gerven 2014; Naselaris et al. 
2009; Agrawal et al. 2014), and detailed experiment information is available in the origi-
nal papers (Kay et  al. 2008; Naselaris et  al. 2009). The fMRI responses were recorded 
when human subjects viewing grayscale natural images while fixating on a central white 
square. Two subjects took part in the experiments. They viewed 1750 training images 
(for encoding model training), each presented twice; and 120 validation images (for 
encoding model testing), each presented ten times. For each subject, the data were 
acquired in five scanner sessions on five different days. Each scan session consisted of 
five training runs, each lasted 11 min, and two validation runs, each lasted 12 min.

The brain activity from the occipital cortex were recorded at a spatial resolution of 
2 mm × 2 mm × 2.5 mm and a temporal resolution of 1 s using a 4T INOVA MR scan-
ner (Varian, Inc.). Brain volumes were co-registered to correct head movements, and the 



Page 3 of 9Wen and Li ﻿Appl Inform  (2016) 3:10 

time-series data were deconvolved from the data to account for the delay in the hemody-
namic response (Friston et al. 1994). Thus after the preprocessing, each stimulus image 
corresponds to one brain volume. The voxels in early visual areas were further divided 
into visual area one (V1), visual area two (V2,) and visual area three (V3). We only con-
sidered brain activity prediction in these areas in this study.

Problem formulation

In a standard regression framework, the design matrix X ∈ R
N×M is formed by 1×M 

feature vectors xs, s = 1, 2, . . . ,N  of N samples. The goal is to predict the value of a N × 1 
target vector y, which contains corresponding target values of xs. In this work, the design 
matrix comprises the features of N stimuli images, and the target vector is composed of 
intensities of a voxel, with each intensity corresponding to a image feature vector. Thus 
the problem here is to find a model that can predict voxel activity in response to stimuli 
accurately.

To evaluate the encoding performance of the prediction models, we calculate the coef-
ficient of determination (R2) between the observed and predicted voxel responses across 
the samples in the validation set. The R2 is defined as

where � · � is the Euclidean norm in Rn, y is the recorded true response vector, ŷ is the 
predicted response vector, and ȳ is the mean response vector. A higher R2 means the 
model performs better in the prediction.

Voxel‑wise models

Most voxel-wise models proposed in previous studies assume that voxel response is a 
weighted sum of the transformed image features. The regression model for each voxel is 
constructed separately, i.e., the model of voxel v is

where X ∈ RN×M is the design matrix that contains features of stimuli images, bv ∈ RM 
is the parameter of the model, M is the number of features of each stimuli image, V is the 
total number of voxels and εv is zero mean Gaussian random vector.

A common problem that often occurs in regression is the so-called over-fitting, which 
may result in models with good performance in training data, but poor generalization 
performance in testing data. To estimate the model and control over-fitting, the com-
mon method is to find parameters that minimize sum-of-squares error function with an 
additional regularization term added:

where X is the known design matrix, bv is the parameter to estimate. The first term in 
the right side is the usual sum of squared errors, and J (bv) is a function of bv as a penalty 
term, �v is the regularization coefficient that controls the relative importance of the error 
term and penalty term J (bv). One widely used J (bv) is the sum of squares of the weight 
vector elements:

(1)R2 = 1− �y− ŷ�2
�y− ȳ�2 .

,

(2)yv = Xbv + εv , v = 1, 2, . . . ,V ,

(3)L(bv) = �yv − Xbv�2 + �vJ (bv).,
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This is often termed ridge regularizer. Minimizing L(bv) with ridge regularizer controls 
over-fitting and yields a closed-form solution.  

Another popular regularizer is the ℓ1 norm of the weight vector elements:

where � · �1 is the ℓ1 norm in Rn. This regularizer is often termed Lasso (Tibshirani 
1996). The Lasso regularizer often results sparse parameter estimation with many 
parameters shrunk to zero.

To determine the optimal �v in the models, we conduct a nested threefold cross-vali-
dation and choose for each voxel v that model which maximizes the correlation between 
Xbv and yv on hold-out data. As done in the previous study (Schoenmakers et al. 2013), 
we sample lambda in the range (10−5, 105) on a log scale. For the convenience of discus-
sion, we refer the voxel-wise model with ridge regularizer as Ridge and the model with 
Lasso regularizer as Lasso.

Proposed model

The voxel-wise models proposed in previous studies constructed regression model for 
each voxel separately, but ignored the dependents between voxels. However, fMRI data 
often possess the specific spatial smoothness property, and voxels from the same local 
brain area often exhibit similar properties. To elevate the performance of brain activ-
ity prediction, we employ the spatial smoothness property of fMRI data and construct a 
multi-target regression model.

For each voxel v, we construct the response matrix

where q is the total number of voxel v’s neighbors, and yvj , j = 1, 2, . . . , q − 1 are the 
response vectors of voxel v’s neighbors. The neighbors of v are defined as voxels con-
tained in a sphere that centered on voxel v. In this work, we set the radius of the sphere 
to 3 voxel size, results in 33 voxels as each voxel v’s neighbors, i.e., q equals 33. We try to 
minimize the total error function for voxel v:

where X is the same as in voxel-wise models, Bv ∈ R
M×q is the parameter to determine, 

Tr[X] means the trace of matrix X, and Rv is a q × q matrix with the (i, j) element being

The first element in the trace operator is the sum-of-squares error function to make sure 
the predicted response matrix Ŷv is similar to the true response matrix. The second ele-
ment is a regularizer that controls the parameter matrix Bv and trends to set the esti-
mated parameter of voxel v similar to its neighbors. Here, we hypothesize that a voxel 
responds to external stimuli in a similar way as those voxels that locate around it; thus, 

(4)J (bv) =
1

2
�bv�2.

(5)J (bv) = �bv�1,

(6)Yv = [yv , yv1, . . . , yv(q−1)].,

(7)L(Bv) = Tr[(XBv − Yv)
T (XBv − Yv)+ �1(BvRv)

T (BvRv)+ �2B
T
v Bv].,

(8)Ri,j =
{

q − 1 if i = j
−1 otherwise
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these voxels may possess similar parameters in the regression model. The third element 
is a regularizer similar with the ridge penalty to control over-fitting.

Model estimation

To estimate the model, we consider the gradient of the total error function:

where I is a q × q identity matrix. There are two regularization coefficients (�1 and �2 ) to 
be determined using nested cross-validation. For description convenient, the gradient is 
expressed as

where R̂ = �1RR
T + �2I. Setting this gradient to zero gives

Note that this equation is different from the traditional equation of penalized least 
square regression, the unknown parameter Bv is in the left hand of the second term in 
this equation, which means the equation cannot be formed into a formation like Ax = b.

Actually, this is the Sylvester equation, with Bv the unknown parameter matrix to be 
determined. The equation can be solved efficiently (Bartels and Stewart 1972). Similar 
to the estimation of Ridge and Lasso regression, we used a nested threefold cross-valida-
tion to determine �1, �2 in the range (10−5, 105) on a log scale.

Prediction

Similar with the widely used searchlight strategy (Kriegeskorte et al. 2006) in brain map-
ping, we move a spherical searchlight through the brain volume. For each center voxel 
v, we can obtain the estimated parameter matrix B̂v by solving Eq. (11). Thus the predic-
tion response matrix Ŷv is calculated as

The brain activity prediction of voxel v and its neighbors are thus the columns of Ŷv. 
Note that in this strategy, the brain activity of voxel v will be predicted in several models, 
i.e., it will appear as the center voxel for one model and will also be as neighbor of other 
voxels for several other models. To obtain a smooth prediction, we set the response of 
voxel v as the mean of these responses.

Implementation details

In this work, we used the Gabor wavelet pyramid model (Jones and Palmer 1987) with six 
frequencies and eight possible orientations to extract stimulus features. To address the 
residual nonlinearity in the model, we applied an additional nonlinear transformation

for each stimuli feature as done in previous studies (Kay et  al. 2008). This resulted a 
1× 10, 920 feature vector for each stimuli image. It is time consuming to optimize the 
regression models when X is so large; so, for computational reasons, we reduced the 

(9)∇L(Bv) = 2× [XTXBv − XTYv + Bv(�1RR
T + �2I)].,

(10)∇L(Bv) = 2× [XTXBv − XTYv + BvR̂].,

(11)XTXBv + BvR̂ = XTYv .

(12)Ŷv = XB̂v .

(13)f (x) = log(1+
√
x).
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features by performing a principal component analysis (PCA) (Bishop 2006) first, which 
is a common strategy in machine learning field for dimension reduction. Only the largest 
500 components were retained; these components capture over 80% of the variance, and 
so the transformed feature vector is 1× 500 for each stimuli.

Results and discussion
Here, we present results obtained by different models on the dataset. We compare our 
proposed multi-target model with two state-of-the-art voxel-wise models (Ridge and 
Lasso); these two models were widely employed in fMRI encoding models (Agrawal 
et  al. 2014; Kay et  al. 2008; Schoenmakers et  al. 2013; Güçlü and van Gerven 2014). 
Only data from training sessions were used to construct models and select regulariza-
tion coefficients �1, �2; data from validation sessions were used to validate the model 
performances.

Table 1 lists how many voxels (in percentage) survived a R2 threshold of 0.1 for differ-
ent models in brain area V1, V2, and V3; these voxels are thought as activity well pre-
dicted. In all models, the performance in V1 is better than in V2 and V3. For subject 1, 
the percent of survived voxels systematically decreased from 29% in V1 to 10% in V3 
when proposed method is used. While for the voxel-based models (ridge and lasso), the 
percent of survived voxels systematically decreased from about 25% in V1 to 6% in V3. 
Similar trend is observed for subject 2, though the performance is not as better as for 
subject 1.

Fig.1 compares the mean R2 of different models across the survived voxels. The mean 
R2 of the proposed method is about 0.26 in V1, and it systematically decreases to 0.19 in 
V3. In contrast, the mean R2 of voxel-based ridge and lasso models are similar, system-
atically decreasing from 0.24 in V1 to 0.17 in V3.
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Fig. 1  Mean prediction R2. The mean prediction R2 of voxels survived the threshold of 0.1 across the two 
subjects in brain areas V1, V2, and V3. Error bars show ±1 SEM across the voxels
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Figures 2 and 3 compare the performance of different models across voxels and brain 
areas. Figure 2 represents the distribution of prediction R2 for survived voxels. In most 
values of R2, the proposed method obtained more voxels than ridge and lasso models. 
The prediction R2 for all voxels are displayed in Fig. 3, where the points above the diago-
nals indicate the superiority of the model on the y-axis over the one on the x-axis. Obvi-
ously, most voxels in each brain area are better predicted by the proposed model than 
the traditional voxel-wise models.
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Fig. 2  Distribution of prediction R2. The distribution of prediction R2 that survived the threshold of 0.1 in 
brain area V1, V2, and V3. Results of the two subjects were merged
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Fig. 3  Prediction R2 in each voxels. Prediction R2 in each voxels, the points above the diagonals indicate the 
superiority of the model on the y-axis over the one on the x-axis
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Conclusions
In this paper, we proposed a multi-target regression model to predict brain activity when 
subjects view grayscale images. Based on the hypothesis that the property of a voxel is 
similar to its local neighbors, we constructed a spatial constraint on model parameters. 
The parameters can be estimated in an efficient way. We illustrated that the proposed 
method achieves better prediction performance on a public dataset fMRI data than 
voxel-wise ridge and lasso models did. The prediction R2 of proposed model was higher 
than those acquired by voxel-wise models and more voxels survived an R2 threshold of 
0.1. These results suggest the benefits of considering essential spatial property of fMRI 
data in encoding models.
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