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Background
Sleep spindles are characteristic electroencephalogram (EEG) waves mainly observed 
during stage 2 non-rapid eye movement (NREM), but occasionally appearing in sleep 
stages 3 and 4 as well, as shown in Fig. 1. The sleep spindle is one of the few transient 
EEG events and is composed of a group of rhythmic waves with progressively increas-
ing amplitude followed by a gradual decrease (De Gennaro and Ferrara 2003). Strictly 
speaking, a sleep spindle is a train of distinct waves with a frequency of 11–16 Hz (most 
commonly 12–14 Hz) (Berry et al. 2012). Interestingly, the characteristics of sleep spin-
dles, such as density, amplitude, or duration, vary substantially between individuals but 
are reasonably stable for each individual (Warby et al. 2014; Tsanas and Clifford 2015).

Sleep spindles play an important role in clinical research. Sleep spindles are believed to 
be associated with synaptic plasticity, memory consolidation, and long-term storage of 
memory representations (Warby et al. 2014). In clinical practice, several disorders, such 
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as schizophrenia, autism, and sleep disorders, have been found to accompany a change 
in spindle density (Diekelmann and Born 2010). Thus, spindle detection is significant 
and may provide further guidance for clinical practice.

Traditionally, sleep spindles are identified by physiology experts, who rely on their 
experience to visually identify them. This approach is a very time-consuming and dif-
ficult task; furthermore, different experts agree on only approximately 70% of the iden-
tifications of sleep spindles (Wendt et al. 2012). In recent years, many researchers have 
proposed different approaches for detecting spindles. Generally, previous researchers 
either considered the raw signal as isolated sample points or epochs. Schönwald et al. 
(2003) applied a Gabor transforms to analyze EEG signals. Duman et al. (2009) intro-
duced a technology combining Short-Time Fourier Transform, Multiple Signal Clas-
sification, and the Teager Energy Operator to locate spindles. In addition, Wendt et al. 
(2012) processed the signals from two channels with two equiripple low-pass filters and 
obtained individual envelopes. Though these approaches achieved a high level of perfor-
mance, they only work on NREM data or require signals from multi-channels, which is 
not flexible enough for practical application. Pattern recognition methods, such as neu-
ral network (Shimada et al. 2000) and Bayesian classification (Babadi et al. 2012), were 
also applied to develop automatic sleep spindle detection methods (Kabir et al. 2015). 
However, the downside to these approaches is the required use of training data to gen-
erate a classifier for the analysis of subjects. Tsanas and Clifford (2015) developed two 
similar approaches based on the Morlet wavelet transforms and combined spindles with 
appropriate duration. However, to some extent, dividing the signal into fixed-length 
epochs or focusing on a sample point in isolation is not suitable for spindle detection.

Based on this point of view, we employed a sliding window-based probability estima-
tion (SWPE) method for sleep spindle detection, aiming to improve the performance of 
the spindle detection method. In our work, sample points were estimated in relation to 
their neighboring points. Moreover, we presented a novel assessment method to evaluate 
and compare the performance of the different approaches for detecting sleep spindles.

Materials and methods
In this section, we summarize the database we used in this work and then introduce our 
approach in two steps. Step 3 was the enhancement of our approach, using the envelope 
of the rectified signal. A suggested assessment method is also discussed at the end of this 
section.

spindle

Fig. 1  Illustration of the EEG signal segment and sleep spindle. A sleep spindle is the fuchsia curve with dura-
tion of 0.8 s
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Materials

The database in this work was obtained from the DREAM project (Devuyst et al. 2011). 
The full database consisted of whole-night polysomnogram (PSG) recordings collected 
from eight subjects with different pathologies. PSG recordings usually included several 
bioelectricity signals but only the EEG signals were analyzed in our study. These record-
ings were sampled at different frequencies, namely 50, 100, or 200  Hz. As described, 
a segment of 30  min from the central EEG channel of each subject was extracted for 
spindles scoring, rather than analyzing the recording from the whole night. Two experts 
independently annotated the onset of sleep spindles in an effort order to make the anno-
tations more reliable. However, one expert scored eight segments and provided the 
exact duration of spindles, while the other expert scored only six segments and set all 
of the durations to 1 second. The database can be accessed from http://www.tcts.fpms.
ac.be/ devuyst/Databases/DatabaseSpindles.

Methods

Step 1: Continuous wavelet transform with Mexican hat wavelet function

A signal is defined as non-stationary if its statistics (including mean, variance, and 
higher-order statistics) changed with time, so the EEG signals used in this study are non-
stationary according to this definition. Many classical frequency analysis methods, such 
as the Fourier transform, will fail to capture the dynamics of the underlying events and 
are not appropriate for sleep spindle detection. Short-Time Fourier Transform (STFT) 
can be applied for non-stationary signal processing, but it uses an equal sized window 
for all ranges of frequency. This is a weakness when analyzing signals in multi-resolu-
tion. In this paper, the Mexican hat wavelet transform was used to perform a time–fre-
quency analysis, as shown in Fig. 2.

Mathematically, the Mexican hat wavelet is defined as the negative normalized second 
derivative of a Gaussian function,

where c is a constant for normalization and c = 2π1/4/
√
3.

(1)ψ(t) = −c(e−t2/2)
′′
= c(1− t2)e−t2/2

Fig. 2  Time–frequency analysis based on the Mexican hat wavelet
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Before analyzing the time–frequency characteristics, we calculated the power spec-
tral density of the raw sleep EEG signals. The results showed that the amplitude of the 
signals generally decreased as the frequency increased, roughly fitting a negative power 
equation. Moreover, the most concentrated frequency band of the sleep EEG signal was 
below 10 Hz. However, it has been introduced that the frequency band of a sleep spin-
dle is predominantly between frequencies of 11–16 Hz. Thus, the spindle would be sub-
merged by the low-frequency components, making spindle detection difficult. Based on 
this point of view, we focused on frequencies from 8–25 Hz with a resolution of 0.2 Hz 
in this paper. As a result, the signals were analyzed at 86 adjacent scales and a wavelet 
coefficient matrix with 86 rows was ultimately obtained.

Step 2: Sleep spindles identification with a sliding window

After obtaining the wavelet coefficient matrix, we employed a sliding window-based 
method to estimate the sample points. To find out the candidate spindle points corre-
sponding to large wavelet coefficients at the frequencies, we sorted the wavelet coeffi-
cients of each sample point in descending order and set the top 10% of the coefficients to 
1 and the rest to 0. Here, 10% is an empirical value in our study.

A sliding window was then placed on the matrix, as shown by the red rectangle in 
Fig. 3. We denoted the width and height of the sliding window by row and col, separately. 
For a signal sampled at a frequency of f, the row will be 0.1× f , while the col will be a 
constant value of 25 (representing a frequency band from 11 to 16 Hz with a resolution 
of 0.2 Hz). For instance, for signals sampled at 100 Hz, the width of the sliding window 
will be 10 (10 = 0.1× 100 ) and the height of the sliding window will be a constant value 
of 25. Additionally, a sample point was set to 1 only when the sum of its binary coef-
ficients in the sliding window was in the top 10%. As a result, 90% of sample points will 
be set to 0 according to this rule. The raw EEG signal was represented by a binary signal.

In our study, the binary signal was used to generate sleep spindle candidates. For a 
binary signal b with a length of N, the probability that the sample point belongs to a 
spindle is estimated by

(2)p(bi) =
i+nf
∑

k=i−nf

bk i ∈ [1+ nf ,N − nf ]

0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0

Frequency(Hz)

Time (s)
8

11

16

25

Estimate

Fig. 3  Illustration of estimation of EEG signals using a sliding window. A value in the table is the simplified 
form of five values corresponding to five adjacent scales because the frequency resolution is 0.2 Hz
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where bi is a sample point of a binary signal b, f is the frequency of the raw signal, N is 
the length of the binary signal, and n is an empirical value equated to 0.1 in this paper.

Then, we used a threshold of 0.5 to determine sleep spindle points. A sleep spindle 
point can be regarded as a sample point from the whole sleep spindle in this paper.

Finally, the successive sleep spindle points were combined to generate the spindle candi-
dates, with the constraint condition that the length of a spindle is between 0.4 and 1.6 s.

Step 3: Enhancement with the envelope of the rectified signal

After generating the spindle candidates, we used the envelope of the rectified signal to 
remove the false spindle candidates. First, we used a filter with a pass band between 11 
and 16 Hz (the frequency band of sleep spindles) to obtain a rectified signal y(n), which 
can be expressed as follows:

where x(n) is the raw EEG signal and h11−16(n) is the impulse response of the filter. Then, 
we used a low-pass filter with a cutoff frequency of 2 Hz to obtain the envelope of the 
rectified signal, which is expressed as follows:

where e(n) is the envelope of the rectified signal and hlowpass is the impulse response of 
the low-pass filter mentioned above.

The relationship between the envelope and the spindle candidates is illustrated in 
Fig.  4. It shows that most of the candidates are located at positions corresponding to 
the local maximums of the envelope. Therefore, we applied (6) to estimate the reliabil-
ity of each sleep spindle candidate ci and removed 10% of candidates with the lowest 
reliabilities.

where C is the number of candidates, ci represents a single candidate, di and oi are the 
duration and the onset of ci, respectively.

A suggested assessment method for evaluating the detection method

As discussed above, the first expert defined both the onsets and exact durations of the 
eight recordings, while the second expert only gave the onsets of the six recordings. 
Additionally, these annotations are not consistent, which caused researchers to have 
divergent views. For example, some researchers only considered the annotations from 
the first expert. Moreover, the criteria to evaluate the detection capabilities were quite 
different. Only considering the absolute difference between the detected spindle onset 
and the spindle onset determined by the experts (Tsanas and Clifford 2015) or only con-
sidering the overlap of the spindles (Causa et al. 2010) are both inappropriate in fact. In 

(3)bi =
{

spindle point p(bi) > 0.5
non-spindle point p(bi) ≤ 0.5

(4)y(n) = x(n) ∗ h11−16(n) n = 1, . . . ,N

(5)e(n) = |y(n)| ∗ hlowpass(n) n = 1, . . . ,N

(6)r(ci) = 1
di

oi+di
∑

k=oi

ek i = 1, . . . ,C



Page 6 of 9Zhuang et al. Appl Inform  (2016) 3:11 

this study, we suggested comparing the center offset between the detected spindle and 
the spindle determined by the experts. We regarded the detected spindle as correct if the 
absolute difference between these two centers is <0.5 s.

To evaluate the performance of an algorithm, the precision (also known as positive 
predictive value) and the recall (also known as sensitivity) are usually used. However, 
the sensitivity–specificity metric was commonly used in the previous researches, so we 
cautiously include them in this paper. The metrics involved in our study are defined as 
follows:

1.	 Sensitivity: This metric is also known as recall, and it measures the proportion of 
sleep spindles correctly identified by an automatic method. We want the sensitivity 
(or recall) to be high or even equal to 100%: 

2.	 Specificity: This metric measures the proportion of non-spindles correctly identified 
by an automatic method. We want the specificity to be high or even equal to 100%: 

3.	 False Discovery Rate (FDR): This metric measures the proportion of wrong detection 
results. Ideally, we want FDR to be 0: 

4.	 F1-score: The F1-score can be used as a single measure of the performance of an 
algorithm. It is the harmonic mean of precision and recall that introduced to meas-
ure the overall performance of an approach: 

(7)sensitivity = TP
TP+FN .

(8)specificity = TN
TN+FP .

(9)FDR = TP
TN+FP

(10)precision = TP
TN+FP = 1− FDR .

(11)score = 2× precision×recall
precision+recall .

Fig. 4  Relationship between the envelope and the spindle candidates. The red curve in the top graph is the 
envelope of the rectified signal, and the purple curve in the bottom graph shows the candidates
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Results and discussion
In our study, we compared our approach with four different approaches denoted by A1, 
A2, A3, and A4. A1 was proposed by Ferrarelli et al. (2007), A2 was proposed by Wendt 
et al. (2012), and A3 and A4 were successively proposed by Tsanas and Clifford (2015). 
The results are shown in Tables 1, 2, 3, 4, and 5, with the best performing approach for 
each case highlighted in italic.

When comparing these six methods, we can see that none of these methods has abso-
lute superiority in sensitivity, specificity, and FDR. Although the forth approach (A4) 
performed best in relation to sensitivity, its specificity was much lower than our pro-
posed approach SWPE. The first approach (A1) has a high value on specificity but its 
performance in sensitivity is very poor. Among these methods, our approach SWPE has 
distinct advantages in FDR.

The F1-score is a harmonic mean of precision and recall, which is usually applied as 
a single measure of a detector, especially in retrieval work. Therefore, the F1-score was 

Table 1  Sensitivity (%) of the six methods

Methods S1 S2 S3 S4 S5 S6 S7 S8 Mean

A1 6.59 2.68 6.12 2.90 15.49 20.75 22.22 6.25 10.38

A2 68.26 56.25 71.43 52.17 60.56 67.92 77.78 75.00 66.17

A3 69.46 58.04 67.35 65.22 51.41 50.31 88.89 83.33 66.75

A4 76.65 64.29 75.51 75.36 71.83 67.92 94.44 95.83 77.73

SWPE 45.51 46.43 67.35 46.38 46.48 48.43 61.11 56.25 52.24

SWPE-E 44.15 45.54 65.30 45.25 45.85 47.01 60.23 54.48 50.98

Mean 51.77 45.54 58.84 47.88 48.60 50.39 67.45 61.86 54.04

Table 2  Specificity (%) of the six methods

Methods S1 S2 S3 S4 S5 S6 S7 S8 Mean

A1 99.82 99.88 99.89 99.42 99.16 99.39 98.88 99.32 99.47

A2 87.32 81.16 88.35 87.00 92.46 92.93 80.64 82.76 86.58

A3 95.04 93.84 94.75 87.98 95.66 97.62 94.16 79.57 92.33

A4 80.07 77.61 78.81 70.36 81.48 87.14 76.60 58.68 76.34

SWPE 98.01 98.52 99.09 97.75 98.49 98.72 98.21 96.58 98.17

SWPE-E 99.50 99.52 99.54 98.52 99.21 98.94 99.24 97.57 99.01

Mean 93.29 91.76 93.41 90.17 94.41 95.79 91.29 85.75 91.98

Table 3  FDR (%) of the six methods

Methods S1 S2 S3 S4 S5 S6 S7 S8 Mean

A1 21.43 40.00 40.00 83.33 38.89 23.26 83.33 80.00 51.28

A2 64.49 83.46 85.36 86.21 59.24 51.79 96.10 89.35 77.00

A3 41.12 61.54 73.60 82.21 49.66 32.77 86.67 89.95 64.69

A4 71.74 84.00 90.93 90.80 75.06 66.14 96.08 94.03 83.60

SWPE 19.15 32.47 32.65 54.93 27.47 21.43 74.42 68.97 41.44

SWPE-E 12.23 20.56 20.45 41.52 18.44 16.25 60.25 54.25 30.49

Mean 38.36 53.67 57.17 73.17 44.79 35.27 82.81 79.43 58.08
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employed to measure the overall performance of an algorithm in this paper. We can 
see that the F1-score of our approach, SWPE-E, was significantly higher than the other 
approaches, as shown in Fig. 5.

When comparing the approach SWPE and the enhanced method SWPE-E, we can see 
that SWPE-E has a lower FDR because it rejected some false candidates.

Conclusions
This paper proposes a novel approach for automatic detection of sleep spindles and 
introduced a method for comparing the performance of different detection methods. 
Our approach relied on only one single EEG channel and does not need the speci-
fied NREM stage signals for detection. We performed a continuous wavelet transform 

Table 4  Precision (%) of the six methods

Methods S1 S2 S3 S4 S5 S6 S7 S8 Mean

A1 78.57 60.00 60.00 16.67 61.11 76.74 16.67 20.00 48.72

A2 35.51 16.54 14.64 13.79 40.76 48.21 3.90 10.65 23.00

A3 58.88 38.46 26.40 17.79 50.34 67.23 13.33 10.05 35.31

A4 28.26 16.00 9.07 9.20 24.94 33.86 3.92 5.97 16.40

SWPE 80.85 67.53 67.35 45.07 72.53 78.57 25.58 31.03 58.56

SWPE-E 87.77 79.44 79.55 58.48 81.56 83.75 39.75 45.75 69.51

Mean 61.64 46.33 42.84 26.83 55.21 64.73 17.19 20.58 41.92

Table 5  F1-score (%) of the six methods

A1 12.16 5.13 11.11 4.94 24.72 32.67 19.05 9.52 17.11

A2 46.72 25.56 24.30 21.81 48.73 56.39 7.43 18.65 34.14

A3 63.73 46.26 37.93 27.95 50.87 57.55 23.18 17.94 46.19

A4 41.29 25.62 16.19 16.40 37.02 45.19 7.53 11.24 27.09

SWPE 58.24 55.03 67.35 45.72 56.65 59.92 36.06 40.00 55.22

SWPE-E 58.75 57.89 71.72 51.02 58.70 60.22 47.89 49.73 58.82

Mean 56.28 45.93 49.58 34.39 51.69 56.67 27.40 30.88 47.21
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Fig. 5  Comparison of the F1-scores of the six methods
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following by a sliding window to find out the candidate spindle points corresponding to 
the large wavelet coefficients at the frequencies of spindles. We estimated their probabil-
ities with neighboring sample points. Finally, we compared our detection method with 
four other approaches using a novel assessment method based on the center offset, and 
the results showed that our detection method performed significantly better than the 
other methods.
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