
Balancing decoding speed and memory
usage for Huffman codes using quaternary tree
Ahsan Habib*  and Mohammad Shahidur Rahman

Background
Huffman (1952) presented a coding system for data compression at I.R.E conference in
1952 and informed that no two messages will consist of same coding arrangement and
the codes will be produced in such a way that no additional arrangement is required to
specify where a code begins and ends once the starting point is known. Since that time
Huffman coding is not only popular in data compression but also image and video com-
pression (Chung 1997). Schack (1994) described in his paper that codeword lengths of
both Huffman and Shanon–Fano have similar interpretation. Katona and Nemetz (1978)
investigated the connection between self-information of a source symbols and its code-
word length.

In another research, Hashemian (1995) introduced a new compression technique with
the clustering algorithm. In this new type of algorithm, he claimed that it required mini-
mum storage whereas the speed for searching of symbol will be high. He also conducted
experiment on video data and found his method very efficient. Chung (1997) intro-
duced an array-based data structure for Huffman tree where the memory requirement
is 3n− 2 . He also proposed a fast decoding algorithm for this structure and claimed that
the memory size can be reduced from 3n− 2 to 2n− 3, where n is the number of sym-
bols. To attain more decoding speed with compact memory size, Chen et al. (1999) pre-
sented a fast decoding algorithm with O

(

log n
)

 time and ⌈ 3n2 ⌉ + ⌈
(

n
2

)

log n⌉ + 1 memory
space.

Abstract 

In this paper, we focus on the use of quaternary tree instead of binary tree to speed
up the decoding time for Huffman codes. It is usually difficult to achieve a balance
between speed and memory usage using variable-length binary Huffman code.
Quaternary tree is used here to produce optimal codeword that speeds up the way of
searching. We analyzed the performance of our algorithms with the Huffman-based
techniques in terms of decoding speed and compression ratio. The proposed decod-
ing algorithm outperforms the Huffman-based techniques in terms of speed while the
compression performance remains almost same.

Keywords:  Binary tree, Encoding and decoding, Huffman tree, Quaternary tree, Data
compression

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

REVIEW

Habib and Rahman ﻿Appl Inform (2017) 4:5
DOI 10.1186/s40535-016-0032-z

*Correspondence:
ahabib‑cse@sust.edu
Shahjalal University
of Science and Technology,
Sylhet, Bangladesh

http://orcid.org/0000-0001-9320-4456
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40535-016-0032-z&domain=pdf

Page 2 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Banetley et al. (1986) introduced a new compression technique that is quite close to
Huffman technique with some implementation advantages; it requires one-pass over the
data to be compressed. Sharma (2010) and Kodituwakku and Amarasinghe (2011) have
presented that Huffman-based technique produces optimal and compact code. How-
ever, the decoding speed of this technique is relatively slow. Bahadili and Hussain (2010)
presented a new bit level adaptive data compression technique based on ACW algo-
rithm, which is shown to perform better than many widely used compression algorithms
in terms of compression ratio. Hermassi et al. (2010) showed how a symbol can be coded
by more than one codeword having the same length. Chowdhury et al. (2002) presented
a new decoding technique of self-styled static Huffman code, where they showed a very
efficient representation of Huffman header. In paper, Suri and Goel (2011) focused on
the use of ternary tree, where a new one-pass algorithm for decoding adapting Huffman
codes is implemented.

Fenwick (1995) in his research showed that the Huffman codes do not improve the
code efficiency at all time. It shows that the performance is always declining when mov-
ing to the lower extension to higher extension. Szpankowski (2011) and Baer (2006)
explained the minimum expected length of fixed-to-variable lossless compression with-
out prefix constraint. Huffman principle, which is well known for fixed-to-variable code,
is used in Kavousianos (2008) as a variable-to-variable code. A new technique for online
compression in networks has been presented by Vitter (1987) in his paper. Habib et al.
(2013) introduced Haffman code in the field of database compression. Gallager (1978)
explained four properties of Huffman codes—sibling property, upper bound property,
codeword length property and symbol frequency property. He also proposed an adaptive
approach of Huffman coding. Lampel and Ziv (1977) and Welch (1984) described a cod-
ing technique for any kind of source symbol. Lin et al. (2012) worked on the efficiency
of Huffman decoding, where authors first transform the basic Huffman tree to recursive
Huffman tree, and then the recursive Huffman algorithm decodes more than one symbol
at a time. In this way, it achieves more decoding speed. Google Inc. recently released
a compression tool named Zopfli (Alakuijala and Vandevenne 2013) and claimed that
Zopfli yields the best compression ratio.

In summary, it is revealed in the literature that using binary Huffman code it is dif-
ficult to achieve a balance between speed and memory usage. In this paper, we focus on
the use of quaternary tree instead of binary tree that speeds up decoding time. Here, we
employ two algorithms for encoding and decoding quaternary Huffman codes for the
implementation of our proposed technique. When compared with the Huffman-based
techniques, the proposed decoding algorithm exhibits excellent performance in terms
of speed while the compression performance remains almost same. In this way, the pro-
posed technique offers a way to balance between the decoding time and memory usage.
We have organized the paper as follows. In “Quaternary tree architecture” section, tra-
ditional binary Huffman decoding technique in data management systems is presented.
The overview of our proposed architecture with encoding and decoding techniques is
also presented in this section. The implementation technique has been described in
“Implementation” section. The experimental results have been thoroughly discussed in
“Result and discussion” section and finally “Conclusion” section concludes the paper.

Page 3 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Quaternary tree architecture
The main contribution of this research is to implement a new lossless Huffman-based
compression technique. The implementation of the algorithms has been explained with
some mathematical foundations. Finally, implemented algorithms have been tested
using real data.

Tree construction

Huffman codes to binary data

Huffman’s scheme uses a table of frequency to produce codeword for each symbol (Wiki-
pedia short history of Huffman coding 2011). This table consists of every symbol of
entire document and its respective frequency is arranged in ascending order. Accord-
ing to the frequency of distinct symbol, each symbol has a variable-length bit string and
all the bit strings are distinct. Table 1 shows the variable-length codeword for different
symbols of the sentence “This is an example of quaternary Huffman tree.”

Consider a set of source symbols S = {s0, s1, . . . , sn−1} = {Space, a, . . . , y, .} with fre-
quencies W = {w0,w1, . . . ,wn−1} for w0 ≥ w1 ≥ . . . ≥ wn−1, where the symbol si has fre-
quency wi and n is the number of symbols. The codeword ci, 0 ≤ i ≤ n− 1, for symbol si
can be calculated by traversing the path from root to the symbol si, when goes to left it
writes ‘0’ and when goes to right it writes ‘1’. If the level of the root is zero, then the code-
word length can be determined as the level of si. The traversing time of a tree depends
on its weighted path length

∑

wili, which is expected to be minimum. The Huffman tree
for the source symbols {s0, s1, . . . , s18} with the frequencies {8, 6, . . . , 1}, respectively, for
the above example is shown in Fig. 1. The codeword set C{c0, c1, . . . , c18} is derived as
{000, 010, . . . , 11101}, respectively, is shown in Table 1.

Table 1  Codeword generation using binary Huffman principle

Character Frequency Code

Space 8 000

A 6 010

E 5 101

T 3 1000

N 3 1001

F 3 0110

R 3 0111

H 2 1101

I 2 00110

S 2 00111

M 2 00100

U 2 00101

X 1 11001

P 1 110000

L 1 110001

O 1 11110

Q 1 11111

Y 1 11100

. 1 11101

Page 4 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Huffman codes to quaternary data

Quaternary tree or 4-ary tree is a tree in which each node has 0–4 children (labeled as
LEFT child, LEFT MID child, RIGHT MID child, RIGHT child). Here for constructing
codes for quaternary Huffman tree, we use 00 for left child, 01 for left-mid child, 10 for
right-mid child, and 11 for right child.

The process of the construction of a quaternary tree is described below:

• • List all possible symbols with their probabilities;
• • Find the four symbols with the smallest probabilities;
• • Replace these by a single set containing all four symbols, and the probability of the

parent is the sum of the individual probabilities.
• • Replicate the procedure until it has one node.

The code word generated using quaternary Huffman technique is shown in Table 2.
Consider a set of source symbols S = {s0, s1, . . . , sn−1} = {Space, a, . . . , y, .} with fre-

quencies W = {w0,w1, . . . ,wn−1} for w0 ≥ w1 ≥ . . . ≥ wn−1, where the symbol si has fre-
quency wi and n is the number of symbols. The codeword ci, 0 ≤ i ≤ n− 1, for symbol
si can be calculated by traversing the path from root to the symbol si, when goes to left
it writes ‘00’, when goes to left mid writes ‘01’, when goes to right mid writes ‘10’ and
when goes to right writes ‘11’. The codeword length of a symbol can simply be calculated
as the level of si. We know that the traversing time of a tree depends on its weighted
path length

∑

wili, and it is expected to be minimum. The quaternary Huffman tree for

Fig. 1  Construction of binary Huffman tree

Page 5 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

the source symbols {s0, s1, . . . , s18} with the frequencies {8, 6, . . . , 1}, respectively, for the
above example (“This is an example of quaternary Huffman tree.”) is shown in Fig. 2. The
codeword set C{c0, c1, . . . , c18} is derived as {00, 0100, . . . , 111111}, respectively, which is
shown in Table 2.

Table 2  Codeword generation using quaternary Huffman principle

Character Frequency Code

Space 8 00

A 6 0100

E 5 0101

T 3 0110

N 3 0111

F 3 1000

R 3 1001

H 2 1010

I 2 1011

S 2 1100

M 2 1101

U 2 111000

X 1 111001

P 1 111010

L 1 111011

O 1 111100

Q 1 111101

Y 1 111110

. 1 111111

Fig. 2  Construction of quaternary Huffman tree along with decoding table

Page 6 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Comparison of binary and quaternary tree

Table 3 shows some comparisons with some mathematical parameters for the previous
example.

Reduction of time using quaternary tree

Encoding and decoding time of a tree depends on the weighted path length of a tree. If
n is the number of distinct character, Li is code length of the ith character, and fi is the
frequency of the ith character, then we can write the required traversing time T as

where Li = αi · K , αi∞ 1
fi
, K = arity = 2, for quaternary tree, and αi = height constant

Thus, the traversing time also depends on the height of the tree and frequency of dif-
ferent symbols. The height of a quaternary tree is always smaller than the height of a
binary tree. For this reason, traversing time will be reduced for a petite tree.

The structure of header tree for decoding is very simple for the proposed technique.
According to Fig. 2, it does not require to store the entire codeword in the header tree for
a symbol. The most frequent symbol is stored first in the header which confirms faster
decoding. Moreover, retrieving two bits at a time during decoding process also speeds
up the process. In the decoding phase, matching (two bits at a time) from encoded bit
string with the header starts from level 1 in the header tree. If there is any symbol with
codeword of length 2, then it will be found in level 1 in the header tree. Likewise, match-
ing a symbol with codeword of length 4 both the level 1 and level 2 have to be searched.
The simplicity of the header tree also contributes to speed up the decoding process.

Implementation
As mentioned earlier, in quaternary tree each node has 0–4 children (labeled as LEFT
child, LEFT MID child, RIGHT MID child, and RIGHT child).

There are basically two components in quaternary Huffman coding:

• • Quaternary Huffman encoding
• • Quaternary Huffman decoding

T∞

n
∑

i=1

Lifi

T∞K

n
∑

i=1

αifi

Table 3  Comparison of binary and quaternary tree

Parameter Binary tree Quaternary tree

Level 6 3

Total node 37 25

Internal node 18 6

Weighted path length 190 97

Page 7 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Encoding algorithm

Encoding is a two-pass problem. The first pass is to determine the frequencies of letters.
We use this information to create the quaternary Huffman tree. We have used a diction-
ary to store the frequencies of the symbols. When a quaternary Huffman code has been
generated, the symbol will be replaced by the code. This is a modification of Huffman
algorithm (Coreman et al. 2001).

Page 8 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

In line 1, we assign the unordered nodes, C in the queue, Q and later we take the count of
nodes in Q and assign it to n. We assign the value of n to a new variable i. In line 4, we start
iterating all the nodes in queue to build the quaternary tree until the count of i is greater
than 1 which means that there are nodes still left to be added to the parent. In line 5, a new
tree node, z is allocated. This node will be the parent node of the least frequent nodes. In
line 6, we extract the least frequent node from the queue Q and assign it as a left child of the
parent node z. The EXTRACT-MIN (Q) function returns the least frequent node from the
queue and removes it from the queue as well. In line 7, we take the next least frequent node
from the queue and assign it as a left-mid child of the parent z.

From line 8 to 17, we check the value of i or the number of nodes left in the queue Q.
If i equals 2, the frequency of the parent node z, f [z] will be the summation of the fre-
quency of node v, f [v] and the frequency of node w, f [w]. Likewise, for i is equal to 3,
we extract another least frequent node from the queue and add it as a child and add its
frequency to the parent node. For i is greater than 3, we extract two least frequent nodes
and add them as right-mid and right child of the parent z and add their frequency to the
parent z as well. In line 18, we insert the new parent node z into the queue, Q. In line 19,
we take the count of the queue, Q and assign it to i again. The loop continues until a sin-
gle node is left in the queue. Finally, we return the last and single node from the queue Q
as a quaternary Huffman tree.

Decoding algorithm

Decoding is accomplished by reading the encoded data two bits at a time. When iterat-
ing the bit stream 00 bit pattern means go LEFT, 01 pattern means go LEFT MID, 10
pattern means go RIGHT MID and 11 pattern means go RIGHT in case of quaternary
tree. When a bit pattern matches with a symbol according to the header tree, replace the
bit pattern with that symbol and the process is iterated until reached the last bit of the
stream.

In the following algorithm 2 in line 1, we assign the quaternary tree T in the local vari-
able ln. Then, we take the total count of bits in n from B. In line 3, we initialize a local
variable i with 0 which will be used as a counter. In line 4, we started iterating all the
bits in B. As it is a quaternary tree, we have at most four leaves for a parent node: left,
left-mid, right-mid, right and 00, 01, 10, 11 represent these leaf nodes, respectively. We
take two bits at a time. EXTRACT-BIT(B) returns a bit from the bit array B and removes
it from B as well. In lines 5 and 6, local variables b1 and b2 are being assigned with two
extracted bits from the bit array B.

Page 9 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

From line 7 to line 15, we check the extracted bits to traverse the tree from the top. If
the bits are 00, we take the left child of the parent ln and assign it to ln itself. For 01, we
replace the parent ln with its left-mid child, for 10 we replace it with its right-mid child
and for 11 we replace it with the right child. In line 16, we get the key of the replaced
ln and assign it in k. Then, we check whether k has any value. If the k has any value, we
write the value of the k in the output and update the ln with the quaternary tree T itself.
In line 21, we increase the value of i by 2 and the loop gets continued and reads the next
two bits.

This section discusses the encoding and decoding technique of a quaternary Huffman
architecture. The search time for finding a source symbol using quaternary Huffman
algorithm is O(log4n), whereas for Huffman-based algorithm it is O(log2n).

Page 10 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Results and discussion
To verify the applicability and feasibility of the proposed quaternary-based technique,
experimental evaluation has been performed on real data. The experimental results are
compared with regular Huffman-based techniques. Our target was to justify query time
and the storage requirements in comparison with regular Huffman-based techniques.

Experimental environment

Each query has been executed five times and the average execution time has been
counted. The experiments are conducted on a machine with following specifications:

Data set

We have used four real text files as data set. The first two files are the source code of
our implemented programs, which we do not wish to share as it is still unpublished.
The other two files used for evaluation are readily available online (The famous lgpl 2.1
license. https://www.gnu.org/licenses/lgpl-2.1.txt; The transcript of the movie matrix.
http://thematrixtruth.remoteviewinglight.com/). The description of the datasets is given
in Table 4.

Table 4  Data set

S/L File name Description File size (bytes)

1 Quaternary-source.txt The source code of the quaternary Huffman implementation 9861

2 Quaternary-license.txt The license file of the quaternary Huffman implementation 18,651

3 Lgpl-2.1.txt The famous lgpl 2.1 license 27,032

4 The-matrix-transcript.txt The transcript of the movie matrix 46,836

https://www.gnu.org/licenses/lgpl-2.1.txt
http://thematrixtruth.remoteviewinglight.com/

Page 11 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Decoding performance

To measure the decoding performance, we used the dataset on both regular and qua-
ternary Huffman techniques. We consider three techniques as regular Huffman-based
techniques (Chung 1997; Hashemian 1995; Chowdhury et al. 2002) and the performance
of all three techniques is almost same considering next integer number. We used the
StopWatch Class under System.Diagnostic of Mono framework to calculate the time
required. Stopwatch provides a set of methods and properties that can be used to accu-
rately measure elapsed time. The obtained results are described in Table 5. In all cases,
we took the average output of at least five runs.

Four source files of different file size have been used altogether to measure the per-
formance. In Table 5, it has been observed that for each case, quaternary Huffman tech-
nique is more than 50% faster than the regular Huffman-based techniques in case of
decoding time.

In Fig. 3, it has been shown that as file size increases, the quaternary Huffman (line
with diamond shape dot) technique is performing consistently better than the regu-
lar Huffman (line with square dot)-based techniques. In some cases depending on the

Table 5  Decoding performance of the proposed method and regular Huffman-based
Technique

S/N Source file File size
(bytes)

Time (ms) Enhancement rate
over regular binary
((RH − QH) * 100)/RHQuaternary

Huffman (QH)
Regular Huffman-based
techniques (RH) (Chowdhury
et al. 2002)

1 Quaternary-
source.txt

9861 3 7 57.14

2 Quaternary-
license.txt

18,651 6 12 50.00

3 Lgpl-2.1.txt 27,032 7 16 56.25

4 The-matrix-
transcript.txt

46,836 12 27 55.56

0
5

10
15
20
25
30
35
40
45

9861 18651 27032 46836

quaternary-
source.txt

quaternary-
license.txt

Lgpl-2.1.txt the-matrix-
transcript.txt

Ti
m

e
in

 m
ill

is
ec

on
d

Source (Before Compression) file size in bytes

Decoding Time Comparison

Fig. 3  Decoding time comparison. Line with diamond shape dot indicates quaternary Huffman and line with
square dot indicates regular Huffman-based technique

Page 12 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

relative frequencies of the symbols in a file, it is more than two times faster than regular
Huffman-based techniques.

To measure the memory usage, we used the dataset on both regular and quaternary
Huffman techniques. The method described in Chen et al. (1999) is used for comparison
with the proposed method. Table 6 illustrates the compression rate between two tech-
niques. It has been shown that the quaternary technique compresses the original file at
an average rate of 32%, whereas the regular Huffman-based technique compresses at an
average rate of 39%. Regular Huffman-based technique compresses little better than the
proposed quaternary technique, this is just because of quaternary technique produced
larger codeword. In some cases, the compression rate is almost equal for both techniques.

The comparison of the compression performance of both techniques using the origi-
nal file is also shown in Fig. 4 [ash color column indicates original file size, black column
indicates regular Huffman-based technique (Chen et al. 1999) and texture column indi-
cates quaternary Huffman technique].

Performance test with reknown corpus and recent Huffman‑based techniques

We compare the performance of the proposed technique with Zopfli (Alakuijala and
Vandevenne 2013), WinZip (2016) and PKZip (2016) algorithms. Google claims that

Table 6  Compression performance of the proposed technique and regular Huffman-based
technique

Source file Space (byte) Enhancement
rate (Quaternary)
((OS − QH) *
100)/OS

Enhancement
rate (regular)
((OS − RH) *
100)/OS

Original size
(OS)

Quaternary
Huffman (QH)

Huffman-based
technique (RH)
(Chen et al. 1999)

Quaternary-
source.txt

9861 6958 6347 29.44 35.64

Quaternary-
license.txt

18,651 13,520 10,930 27.51 41.40

Lgpl-2.1.txt 27,032 16,042 15,840 40.66 41.40

The-matrix-
transcript.txt

46,836 30,909 27,816 34.01 40.61

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

quaternary-
source.txt

quaternary-
license.txt

Lgpl-2.1.txt the-matrix-
transcript.txt

Fi
le

 s
iz

e
a�

er
 c

om
pr

es
si

on

Samples

Compression Comparison

Fig. 4  Side-by-side compression comparison. Ash color column indicate original file size, black column indi-
cate regular Huffman-based technique, and texture column indicate quaternary Huffman technique

Page 13 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Zopfli produces the highest compression ratio for similar technique. Zopfli uses Huff-
man coding to replace each value with a string of bits. WinZip and PKZip are the most
widely used recent Huffman-based compression tools. In all cases, we took the average
output of five runs.

Table 7 shows the result of compression ratio and compression–decompression speed
on the Enwik8 corpus. The Enwik8 corpus is a 95.3-MB file with 156 distinct characters.
This corpus is prepared as a large text compression standard, which have 100 million
bytes of English Wikipedia.

The result indicates that compression ratio is highest for Zopfli but the compression
and decompression speed is very slow. The Zopfli requires over 400 s whereas all other
techniques require less than 200 s. If we would compromise between time–space, and
when speed is the main factor, then we may choose quaternary technique for this type of
large corpus.

Table 8 shows the result of compression ratio and compression–decompression speed
on the Canterbury corpus (The Canterbury Corpus. http://corpus.canterbury.ac.nz/
resources/cantrbry.zip). The Canterbury corpus is 2.67-MB file with 72 distinct charac-
ters. This corpus is a modified version of Calgary corpus which is designed to test the
compression algorithms.

If we observe the result, it has been shown that compression ratio is highest for Zopfli
but its compression and decompression speed is very slow. The Zopfli requires over 13 s
whereas all other techniques require less time.

In this section, we have analyzed both techniques thoroughly with different example
in terms of time and space. For decoding speed, the proposed quaternary technique

Table 7  Comparison of the proposed technique with recent Huffman-based techniques
for Enwik (The Enwik8 Corpus. http://mattmahoney.net/dc/text.html http://mattmahoney.
net/dc/enwik8.zip) corpus

Method/algorithm Space (MB) Compression
enhancement
with respect to origi-
nal file (%)

Compression–decom-
pression time (s)

Time enhancement
with respect to Zopfli
(%)

Quaternary 49.67 47.88 186.88 59.66

WinZip 35.2 63.06 187.65 59.49

PKZip 34.5 63.80 195.21 57.86

Zopfli 33.37 64.98 463.26 –

Table 8  Comparison of the proposed technique with recent Huffman-based techniques
for Canterbury corpus

Method/algorithm Space (MB) Compression
enhancement
with respect to origi-
nal file (%)

Compression–decom-
pression time (s)

Time enhancement
with respect to Zopfli
(%)

Quaternary 1.71 35.95 1.37 89.78

WinZip 0.71 73.40 5.61 46.471

PKZip 0.69 74.15 2.74 21.26

Zopfli 0.64 76.07 13.36 –

http://corpus.canterbury.ac.nz/resources/cantrbry.zip
http://corpus.canterbury.ac.nz/resources/cantrbry.zip
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/enwik8.zip
http://mattmahoney.net/dc/enwik8.zip

Page 14 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

outperforms the regular Huffman-based techniques. On the other hand, the compres-
sion recital is almost similar for most of the files.

Conclusion
A new lossless compression technique based on Huffman principle is implemented in this
paper. We introduced quaternary tree instead of binary tree in Huffman principle. We have
shown that representation of Huffman code using quaternary tree is more beneficial than
Huffman code using binary tree in terms of processing speed with an insignificant increase
in required space. When speed is the main factor, then the quaternary tree based tech-
nique performs better than the binary tree based technique. Thus, the proposed technique
provides a way to balance between the decoding time and memory usage.
Authors’ contributions
The authors discussed the problem and the solutions proposed all together. Both authors participated in drafting and
revising the final manuscript. Both authors read and approved the final manuscript.

Acknowledgements
Authors are grateful to ministry of posts, telecommunications and information technology, People’s Republic of Bangla-
desh for their grant to do this research work. The authors would like to thank the anonymous experts for their valuable
comments and suggestion for improving the quality of this research paper.

Competing interests
The authors declare that they have no competing interests.

Availability of data
The datasets supporting of this article are available online in the following link.

The famous lgpl 2.1 license, Accessed at https://www.gnu.org/licenses/lgpl-2.1.txt
The transcript of the movie Matrix. Accessed at http://thematrixtruth.remoteviewinglight.com/
The Enwik8 Corpus. Accessed at http://mattmahoney.net/dc/text.html http://mattmahoney.net/dc/enwik8.zip
The Canterbury Corpus. Accessed at http://corpus.canterbury.ac.nz/resources/cantrbry.zip
The WinZip compression tool, version 1.0.220.1, released by WinZip Computing, S.L., A Corel Company. Accessed at:

http://www.winzip.com/win/en/downwz.html
The PKZip compression tool, version 14.40.0028, released by PKWARE Inc. Accessed at https://www.pkware.com/pkzip

Funding
All the funding provided by the Ministry of Posts, Telecommunications and Information Technology, People’s Republic of
Bangladesh [Order No: 56.00.0000.028.33.007.14 (part-1)-275, date: 11.05.2014; and Order No: 56.00.0000.028.33.025.14-
115, date 10.05.2015]. The above funding gives the financial support for the designing of the study and conducting
experiments.

Received: 13 December 2016 Accepted: 26 December 2016

References
Alakuijala J, Vandevenne L (2013) Data compression using Zopfli. Google Inc. https://zopfli.googlecode.com/file/Data_

compression_using_Zopfli.pdf
Baer M (2006) A general framework for codes involving redundancy minimization. IEEE Trans Inf Theory 52:344–349
Bahadili HA, Hussain SM (2010) A bit-level text compression scheme based on the ACW algorithm. Int J Autom Comput

7(1):123–131
Benetley JL, Sleator DD, Tarjan RE, Wei VK (1986) A locally adaptive data compression scheme. Commun ACM

29(4):320–330
Chen HC, Wang YL, Lan YF (1999) A memory-efficient and fast Huffman decoding algorithm. Inform Process Lett

69:119–122
Chowdhury RA, Kykobad M, King I (2002) An efficient decoding technique for Huffman codes. Info Process Lett

81:305–308
Chung KL (1997) Efficient Huffman decoding. Inform Process Lett. 61:97–99
Coreman TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. The MIT Press, England
Fenwick PM (1995) Huffman code efficiencies for extensions of sources. IEEE Trans Commun 43:163–165
Gallager RG (1978) Variations on a theme by Huffman. IEEE Trans Inf Theory 24(6):668–674
Habib A, Hoque ASML, Hussain MR (2013) H-HIBASE: compression enhancement of HIBASE technique using Huffman

coding. J Comput 8(5):1175–1183
Hashemian R (1995) Memory efficient and high-speed search Huffman coding. IEEE Trans Comm 43(10):2576–2581

https://www.gnu.org/licenses/lgpl-2.1.txt
http://thematrixtruth.remoteviewinglight.com/
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/enwik8.zip
http://corpus.canterbury.ac.nz/resources/cantrbry.zip
http://www.winzip.com/win/en/downwz.html
https://www.pkware.com/pkzip
https://zopfli.googlecode.com/file/Data_compression_using_Zopfli.pdf
https://zopfli.googlecode.com/file/Data_compression_using_Zopfli.pdf

Page 15 of 15Habib and Rahman ﻿Appl Inform (2017) 4:5

Hermassi H, Rhouma R, Belghith S (2010) Joint compression and encryption using chaotically mutated Huffman trees.
Commun Nonlinear SciNumerSimulat 15:2987–2999

Huffman DA (1952) A method for construction of minimum redundancy codes. Proc IRE 40(1952):1098–1101
Katona GOH, Nemetz TOH (1978) Huffman codes and self information. IEEE Trans Inform Theory 22(3):337–340
Kavousianos X (2008) Test-data compression based on variable-to-variable Huffman encoding with codeword reusability.

IEEE Trans Comput Aided Des Integr Circuits Syst 27:1333–1338
Kodituwakku SR, Amarasinghe US (2011) Comparison of lossless data compression algorithms for text data. Indian J

Comput Sci Eng 1(4):416–426
Lampel A, Ziv J (1977) A universal algorithm for sequential data compression. IEEE Trans Inf Theory 23:337–343
Lin YK, Huang S-C, Yang CH (2012) A fast algorithm for Huffman decoding based on a recursion Huffman tree. J Syst

Softw 85:974–980
Schack R (1994) The length of a typical Huffman codeword. IEEE Trans Inform Theory 40(4):1246–1247
Sharma M (2010) Compression Using Huffman Coding. Int J Comput Sci Netw Secur 10(5):133–141
Suri PR, Goel M (2011) Ternary tree and memory-efficient Huffman decoding algorithm. Int J Comput Sci Issues

8(1):483–489
Szpankowski W (2011) Minimum expected length of fixed-to-variable lossless compression without prefix constraints.

IEEE Trans Inf Theory 57:4017–4025
The PKZip compression tool, version 14.40.0028, released by PKWARE Inc., accessed at https://www.pkware.com/pkzip.

Accessed 19 July 2016
The WinZip compression tool, version 1.0.220.1, released by WinZip Computing, S.L., A Corel Company. http://www.

winzip.com/win/en/downwz.html. Accessed 19 July 2016
Vitter JS (1987) Design and analysis of dynamic Huffman code. J ACM 34(4):825–845
Welch TA (1984) A technique for high-performance data compression. IEEE Comput 17(6):8–19
Wikipedia short history of Huffman coding. http://en.wikipedia.org/wiki/Huffman_coding. Accessed 31 July 2011

https://www.pkware.com/pkzip
http://www.winzip.com/win/en/downwz.html
http://www.winzip.com/win/en/downwz.html
http://en.wikipedia.org/wiki/Huffman_coding

	Balancing decoding speed and memory usage for Huffman codes using quaternary tree
	Abstract
	Background
	Quaternary tree architecture
	Tree construction
	Huffman codes to binary data
	Huffman codes to quaternary data
	Comparison of binary and quaternary tree
	Reduction of time using quaternary tree

	Implementation
	Encoding algorithm
	Decoding algorithm

	Results and discussion
	Experimental environment
	Data set

	Decoding performance
	Performance test with reknown corpus and recent Huffman-based techniques

	Conclusion
	Authors’ contributions
	References

