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Introduction
Multimedia retrieval has become an indispensable part of contemporary Internet devel-
opment. As an important application of artificial intelligence, cross-media retrieval 
[1] can meet users’ requirements to find relevant multimedia data of their queries. For 
example, a photo of a news event can be submitted by user as a query to retrieve the 
relevant text materials or video reports. However, considering the inherent discrepancy 
of instances between different media types, it is challenging to retrieve instances with 
different media types. The theory of machine learning is introduced to address this issue, 
which mostly learns common representation of heterogeneous instances and then meas-
ures their similarities for cross-media retrieval. These cross-media retrieval methods 
have mostly verified their effectiveness [2–6].

Canonical correlation analysis (CCA) [2] is a classical method, learning a subspace 
that maximizes the correlation between different media types. It is extended by Hardoon 
et  al. [3] as kernel canonical correlation analysis (KCCA). Cross-media factor analy-
sis (CFA) [4] is another cross-media retrieval method, which minimizes the Frobenius 
norm between the pairwise instances in the common space by building the projection 
functions for different media types. Zhai et al. [7] use metric learning to learn projection 
functions, and this approach is further improved by adding semi-supervised information 

Abstract 

Due to the progress of deep neural networks (DNN), DNN has been employed to cross-
media retrieval. Existing cross-media retrieval methods based on DNN can convert 
separate representation of each media type to common representation by inter-media 
and intra-media constraints. By using common representation, we can measure simi-
larities between heterogeneous instances and perform cross-media retrieval. However, 
it is challenging to optimize common representation learning due to the inter-media 
and intra-media constraints, which is a multi-objective optimization problem. This 
paper proposes residual correlation network (RCN) to address this issue. RCN optimizes 
common representation learning with a residual function, which can fit the optimal 
mapping from separate representation to common representation and relieve the 
multi-objective optimization problem. The experiments show that proposed approach 
achieves the best accuracy compared with 10 state-of-the-art methods on 3 datasets.

Keywords:  Cross-media retrieval, Deep residual learning, Representation learning

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Yuan et al. Appl Inform  (2017) 4:9 
DOI 10.1186/s40535-017-0038-1

*Correspondence:   
pengyuxin@pku.edu.cn 
Institute of Computer 
Science and Technology, 
Peking University, Beijing, 
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40535-017-0038-1&domain=pdf


Page 2 of 9Yuan et al. Appl Inform  (2017) 4:9 

as joint representation learning (JRL) [5]. Kang et al. [6] propose local group based con-
sistent feature learning (LGCFL), which can deal with unpaired data.

Moreover, due to the significant improvement achieved by DNN in representation 
learning, such as image classification [8], it has been employed to learn the common 
representations of cross-media instances. Cross-media retrieval methods based on deep 
neural networks (DNN) have shown their remarkable performance [9–12], making use 
of DNN’s powerful abstraction ability to learn the common representations for differ-
ent media types. An extension of the restricted Boltzmann machine (RBM) is applied by 
Ngiam et al. [9] to get shared representation and bimodal autoencoders (Bimodal AE) is 
proposed, producing common representation for different media types by a shared code 
layer. Feng et al. [10] propose a method named correspondence autoencoder (Corr-AE) 
to model the reconstruction and correlation constraints simultaneously. Peng et al. [11] 
propose the cross-media multiple deep network (CMDN), using hierarchical learning to 
exploit the complex cross-media correlation.

However, previous methods [5, 9, 10] mostly use inter-media constraints (such as cor-
relation constraints [10]) and intra-media constraints (such as semantic [5] or recon-
struction constraints [9, 10]) to build common representations for cross-media retrieval. 
It is challenging to optimize common representation learning since inter-media and 
intra-media constraints both need to be considered as objective functions [13, 14], which 
restrains the performance of cross-media retrieval. He et al. [15] propose deep residual 
learning and introduce that it is easier to optimize the residual mapping than to opti-
mize the original. If an original mapping is optimal, the residual function could be fitted 
as zero mapping. If not, it could fit the discrepancy between separate representations 
and common representations and further optimize the common representation learn-
ing. Inspired by this paradigm, we propose residual correlation network (RCN) method 
to address the above cross-media optimization problem. RCN models the discrepancy 
between original separate representations and expected common representations by a 
residual function, which benefits to fitting the optimal mapping by back-propagation 
procedure at training stage. Then RCN can use the optimal mapping to generate optimal 
common representations for cross-media retrieval at testing stage.

The rest of this paper is presented as follows “Methods” section introduces the net-
work architecture, objective function, and implementation details of the proposed RCN 
method. “Experiments” section shows experimental details, results, and analysis. At the 
end, the conclusion of this paper is concluded in “Conclusions” section.

Methods
To find the optimal solutions of common representation learning under inter-media and 
intra-media constraints, we use residual learning [15] to model the discrepancy between 
the original separate representations and expected common representations for opti-
mization. We achieve it by designing the residual correlation network (RCN) based on 
the convolutional neural networks (CNN) as shown in Fig. 1. It is seen that RCN has 
two subnetworks: separate representation learning subnetwork and residual correlation 
learning subnetwork.

In cross-media retrieval problem, we denote the dataset as D = {IL,TL, IU ,TU }, where 
{IL,TL} presents labeled image/text pairs and {IU ,TU } corresponds unlabeled image/
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text pairs. The labeled images are denoted as IL =
{

ip, yp
}n1
p=1

, and the labeled texts 
are denoted as TL =

{

tq , yq
}n1
q=1

. Correspondingly, IU =
{

ip
}n2
p=1

 and TU =
{

tq
}n2
q=1

 
are denoted as the unlabeled images and texts. {IL,TL} is only used in training stage 
and {IU ,TU } is only used in testing stage. For residual correlation learning, we denote 
the separate representations and common representations of an instance x as fs(x) and 
fc(x) , which are differed by a residual function �f (x). So the aim of our RCN is to learn 
common representations of unlabeled images IU as RI

U =
{

f Ic (ip)
}n2
p=1

 and unlabeled text 
TU as RT

U =
{

f Tc (tq)
}n2
q=1

 for cross-media retrieval.

Separate representation learning

There are two pathways in separate representation learning subnetwork: image pathway 
and text pathway. In the image pathway, we use five convolutional layers (conv1–conv5) 
and two fully-connected layers (fc6-i and fc7-i) of AlexNet [8] pre-trained on ImageNet 
[16] from the Caffe [17] Model Zoo. In the text pathway, there are two correspond-
ing fully-connected layers (fc6-t and fc7-t) trained from scratch, which have the same 
dimension with image fully-connected layers. Moreover, the text pathway receives the 
BoW feature of each text instance as the original representations. The learning rates 
of five convolution layers are set at zero to maintain their parameters in training stage, 
while the learning rates of all the fully-connected layers are set as 0.01.

Residual correlation learning

Existing methods [5, 9, 10] mostly combine inter-media constraints (such as correla-
tion constraints [10]) and intra-media constraints (such as semantic [5] or reconstruc-
tion constraints [9]) to train their models for building common representations. Since 
inter-media and intra-media constraints both need to be optimized as objective func-
tions, there is a complex optimization problem limiting the performance of cross-media 
retrieval. To address this issue, we propose the residual correlation learning which is 
illustrated in this section.

In the RCN, as there are inter-media correlation constraints and intra-media semantic 
constraints converting separate representation fs(x) of an instance x to common repre-
sentation fc(x), fs(x) and fc(x) are different, namely fc(x) �= fs(x). So it is reasonable that 
fs(x) and fc(x) can be differed by a residual function �f (x) as:
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Fig. 1  An overview of our residual correlation network (RCN)



Page 4 of 9Yuan et al. Appl Inform  (2017) 4:9 

Instead of designing stacked nonlinear layers to approximate fc(x) by a correlation con-
straint as [10], we design several stacked nonlinear layers to approximate the residual 
function �f (x) = fc(x)− fs(x). The process of fs(x)+�f (x) is realized by a shortcut con-
nection and an element-wise addition, so that the residual function is parameterized by 
residual layers. By the shortcut connection, the parameters of separate representation 
learning subnetwork can be directly influenced by the correlation constraint and seman-
tic constraint. If the optimal mapping of common representations can be built by the sep-
arate representation learning subnetwork, the representations generated by the residual 
layers can fit as zero mapping, which makes common representation identical as sepa-
rate representations. If the subnetwork cannot fit the optimal mapping of common rep-
resentation, the residual layers can fit the discrepancy between separate representations 
and common representations and further optimize the common representation learning. 
Therefore, it is easier to optimize the common representation learning by the residual 
layers than directly learning the mapping from separate representations to common rep-
resentations. In other words, the residual layers can adaptively fit the missing part of sep-
arate representation learning compared to common representation learning. The residual 
function �f (x) can be learned with back-propagation algorithm in training stage.

In the implementation, the residual correlation learning subnetwork also consists of 
two pathways, and each pathway has exactly the same architecture. Here, we take the 
image pathway as an example to illustrate. There are two fully-connected layers as resid-
ual layers (res1-i and res2-i), whose learning rates and dimensions are same as fc6-i and 
fc7-i. The two residual layers receive the fc7-i separate representations, with which their 
generated representations are added to generate the common representations. There is 
a correlation constraint layer between the common representations. After a fully-con-
nected layer (fc8-i) and a softmax layer, we can build a semantic constraint for images’ 
training and the probability vector as common semantic representations for testing.

As for the correlation constraint, our RCN uses Euclidean distance between the repre-
sentations generated by cross-media residual layers, which can be denoted as:

Then we get the correlation constraint as:

Minimizing this correlation constraint can reduce the disparity between representations 
generated by residual layers to achieve common representation learning. Moreover, 
RCN also uses the labels of instances to establish the semantic correlation for different 
media types. The semantic constraints are presented as follows:

(1)fc(x) = fs(x)+�f (x)

(2)d2c (ip, tp) =
∥

∥

∥
f Ic (ip)− f Tc (tp)

∥

∥

∥

2
.

(3)LossCorrelation =

n1
∑

p=1

d2c (ip, tp) =

n1
∑

p=1

∥

∥

∥
f Ic (ip)− f Tc (tp)

∥

∥

∥

2

.

(4)LossSemantic = −
1

m

m
∑

p=1

fsm(f
I
c (ip), yp, θ)−

1

m

m
∑

p=1

fsm(f
T
c (tp), yp, θ),



Page 5 of 9Yuan et al. Appl Inform  (2017) 4:9 

where fsm(ip, yp, θ) is the softmax loss function as:

where θ denotes the network’s parameters. The label of instance x is denoted by y and c 
denotes the number of classes. 1

{

y = j
}

 is an indicator function, which equals 1 if y = j , 
otherwise equals 0.

It should be noted that the loss function LossSemantic is a negative constraint. This is 
because that if the parameters are closer to the optimization than previous iterations, 
the prediction results will be closer to the label and the softmax loss function fsm will 
return a higher positive score. So we need to set the LossSemantic as a negative constraint.

Therefore, the objective function of RCN can be denoted as:

where � is a trade-off parameter.
By optimizing with stochastic gradient descent (SGD) algorithm, RCN can minimize 

this objective function and perform cross-media common representation learning in 
training stage. As we can see, there is a multi-objective optimization problem in the 
objective function of RCN. So the residual function can help RCN to converge to a global 
optimization, which addresses the multi-objective optimization problem. Moreover, due 
to the fact that the SGD algorithm is stochastic, the iteration complexity is independent 
of the number of instances [18], which ensures the scalability of RCN.

Experiments
Datasets

The 3 datasets used in the experiment are introduced here. For fairness, we take the 
dataset splits that are completely same as [10, 11] for our RCN and compared methods.

Wikipedia dataset

Rasiwasia ey al. [19] is the most extensively-used dataset in cross-media retrieval as [5, 
10, 11], constructed with the Wikipedia “featured articles”. Wikipedia dataset has 2866 
image/text pairs and 10 categories: art, biology, geography, history, literature, media, 
music, royalty, sport, and warfare. The text instance contains several paragraphs that 
belong to the same section in one Wikipedia web-page with the paired image. The data-
set is split randomly into training set of 2173 pairs, test set of 462 pairs, and validation 
set of 231 pairs.

(5)fsm(x, y, θ) =

c
∑

j=1

1
{

y = j
}

log

(

eθjx
∑c

l=1 e
θlx

)

,

(6)

LossTotal = �LossCorrelation + LossSemantic

= �

n1
∑

p=1

∥

∥

∥
f Ic (ip)− f Tc (tp)

∥

∥

∥

2

−
1

m

m
∑

p=1

fsm(f
I
c (ip), yp, θ)

−
1

m

m
∑

p=1

fsm(f
T
c (tp), yp, θ),
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NUS‑WIDE‑10k dataset

Feng et  al. [10] is a subset of NUS-WIDE dataset [20]. NUS-WIDE dataset contains 
approximately 270,000 images and each image has their corresponding tags. NUS-WIDE 
dataset consists of 81 categories, which exist overlaps. NUS-WIDE-10k dataset is com-
posed of 10 largest categories of NUS-WIDE dataset and has 10,000 image/text pairs. 
The dataset is split randomly into training set of 8000 pairs, test set of 1000 pairs, and 
validation set of 1000 pairs.

Pascal Sentences dataset

Farhadi et al. [21] contains 1000 images selected from 2008 PASCAL development kit, 
which belongs to 20 categories. Each image has 5 sentences as the description. Pascal 
Sentences dataset is split randomly into training set of 800 pairs, test set of 100 pairs, 
and validation set of 100 pairs.

Compared methods and evaluation settings

There are 10 state-of-the-art compared methods in the experiment: CCA [2], KCCA 
(with Gaussian kernel and polynomial kernel) [3], CFA [4], JRL [5], LGCFL [6], Multi-
modal DBN [22], Bimodal AE [9], Corr-AE [10], CMDN [11], and Deep-SM [12]. CCA, 
KCCA, CFA, JRL, LGCFL are traditional methods without deep learning, and Multi-
modal DBN, Bimodal AE, Corr-AE, CMDN, and Deep-SM are deep learning methods.

We conduct two retrieval tasks in the experiment: retrieving texts by image query 
(Image→Text) and retrieving images by text query (Text→Image). Each image in test set 
is regarded as query individually to retrieve all the text in test set and vice versa. We 
adopt the MAP score as the evaluation metric, computed for all the compared methods.

As for image input settings, RCN is an end-to-end processing network and receives 
the raw images directly as input. Nevertheless, except Deep-SM and RCN, all compared 
methods could only receive extracted feature as input. For fairness, we use the fc7 layer 
feature extracted from fine-tuned AlexNet whose architecture is same as our RCN. For 
text, we adopt BoW feature that is completely same as [10, 11] for our RCN and all com-
pared methods. The dimension of BoW feature for Wikipedia dataset is 3000, and the 
dimensions of BoW feature for Pascal sentences and NUS-WIDE-10k datasets are both 
1000.

As for validation set, Multimodal DBN, Bimodal AE, Corr-AE, and CMDN require it 
for parameter optimization while our RCN also needs it for determining the number of 
iterations, but the other methods don’t. So in the training and test stages, validation set 
is not used except Multimodal DBN, Bimodal AE, Corr-AE, CMDN, and our RCN.

Experimental results

The MAP scores of 10 compared methods and our RCN are shown in Table 1. Above 
all, our RCN achieves the best MAP score on all 3 datasets. Compared with the state-of-
the-art method Deep-SM, our RCN accomplishes an exciting enhancement from 0.402 
to 0.453 on Wikipedia dataset. RCN achieves the highest MAP score of 0.507 on NUS-
WIDE-10k dataset. RCN’s result on Pascal Sentences dataset is also the best, compared 
with the other methods.
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Moreover, we conduct a baseline experiment named “RCN (OnlyCorrelation)”, which 
means that we design the correlation network without residual layers. Comparing RCN 
(OnlyCorrelation) and our RCN, it can be seen that the residual correlation learning can 
actually optimize the common representation learning and lead to much better perfor-
mance of cross-media retrieval, especially on the NUS-WIDE-10k dataset.

Table 1  MAP scores of our RCN and compared methods

Dataset Method Task

Image→Text Text→Image Average

Wikipedia dataset CCA 0.176 0.178 0.177

CFA 0.330 0.306 0.318

KCCA (Poly) 0.230 0.224 0.227

KCCA (Gaussian) 0.357 0.328 0.343

Bimodal AE 0.301 0.267 0.284

Multimodal DBN 0.204 0.145 0.175

Corr-AE 0.373 0.357 0.365

JRL 0.408 0.353 0.381

LGCFL 0.416 0.360 0.388

CMDN 0.409 0.364 0.387

Deep-SM 0.458 0.345 0.402

RCN (OnlyCorrelation) 0.465 0.407 0.436

Our RCN 0.489 0.418 0.454

NUS-WIDE-10k dataset CCA 0.159 0.189 0.174

CFA 0.299 0.301 0.300

KCCA (Poly) 0.129 0.157 0.143

KCCA (Gaussian) 0.295 0.162 0.229

Bimodal AE 0.234 0.376 0.305

Multimodal DBN 0.178 0.144 0.161

Corr-AE 0.306 0.340 0.323

JRL 0.410 0.444 0.427

LGCFL 0.408 0.374 0.391

CMDN 0.410 0.450 0.430

Deep-SM 0.389 0.496 0.443

RCN (OnlyCorrelation) 0.360 0.406 0.383

Our RCN 0.497 0.517 0.507

Pascal Sentences dataset CCA 0.110 0.116 0.113

CFA 0.341 0.308 0.325

KCCA (Poly) 0.271 0.280 0.276

KCCA (Gaussian) 0.312 0.329 0.321

Bimodal AE 0.404 0.447 0.426

Multimodal DBN 0.438 0.363 0.401

Corr-AE 0.411 0.475 0.443

JRL 0.416 0.377 0.397

LGCFL 0.381 0.435 0.408

CMDN 0.458 0.444 0.451

Deep-SM 0.440 0.414 0.427

RCN (OnlyCorrelation) 0.433 0.443 0.438

Our RCN 0.472 0.453 0.463
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As for the stability of compared methods, we can see that their performances have dif-
ferent trends in the 3 datasets. For instance, the result of Deep-SM is higher than JRL on 
Wikipedia dataset, while the trend is different on Pascal Sentences dataset. In contrast, 
our RCN carries on the highest MAP scores on the all 3 datasets, showing the generality 
of residual correlation learning method, and it effectively learns better common repre-
sentation and enhances the cross-media retrieval accuracy.

Conclusions
This paper proposes a new cross-media retrieval method RCN, enhancing the optimiza-
tion of common representation learning for cross-media retrieval. RCN models the dis-
crepancy between separate representations and common representations by a residual 
function and further optimizes the common representation learning. Moreover, ade-
quate compared experiments are conducted on 3 extensively-used cross-media datasets, 
which verify the promising capability of our approach.

In the future work, we will extend our RCN to more complex optimization situations 
which have more objective functions in order to make full use of its promising optimiza-
tion ability. Moreover, we intend to verify the performance of our RCN under unsuper-
vised setting, further improving its generalization in more applications.
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