
Learning scene‑aware image priors 
with high‑order Markov random fields
Dong Gong, Yanning Zhang, Qingsen Yan and Haisen Li*

Introduction
Image restoration tasks, such as denoising (Tappen et  al. 2007; Schmidt et  al. 2010; 
Schmidt and Roth 2014), deblurring (Krishnan and Fergus 2009; Krishnan et al. 2011; 
Levin et al. 2009; Zhang et al. 2013; Gong et al. 2016, 2017) and super resolution (Tap-
pen and Liu 2012) are all inherently ill-posed. Some knowledge of natural images is used 
as prior to boost the estimation stability and to recover information lost in non-ideal 
imaging processes. Recently, many image priors work on image gradients for briefness of 
modeling and better performance (Fergus et al. 2006; Levin et al. 2007, 2009; Krishnan 
et al. 2011; Krishnan and Fergus 2009; Xu et al. 2013; Zhang et al. 2013). However, the 
representation of image prior distribution in gradient domain is fragile for sophisticated 
concept of natural, as the variant of image content and/or scale makes the gradient char-
acteristics unstable for modeling the unique clear individual images.

Motivated by the demand of capturing stable and accurate prior knowledge of nat-
ural image, many low-level modeling technologies including feature representa-
tion and related distribution are studied. Recent years have seen a trend to figure out 
this issue through the use of probabilistic graphical models (e.g., MRF and CRF) with 
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non-Gaussian potential functions (Roth and Black 2005; Weiss and Freeman 2007; 
Samuel and Tappen 2009; Schmidt et al. 2010, 2014; Schmidt and Roth 2014; Chen et al. 
2015), such as fields of experts (FoE) (Roth and Black 2005; Schmidt et al. 2010).

All of the manually designed priors and learned priors expect to model a universal 
distribution to represent all real-world natural images (in a specific discussed domain). 
Unfortunately, different images with different scene contents have varying statistics on 
usual low-level features like gradients or responses of learned filters in high-order MRF 
cliques (Fig.  1). Figure  1 shows that images with different contents (Left) have differ-
ent responses on the gradient filter (Middle) or the learned high-order filters in Schmidt 
et  al. (2010) (Right). Therefore, relying on universal generative image prior to recover 
every specific image is improper.

Considering the gap between the universal image prior and the special property of 
individual images, a series of content-related image priors are exploited in many image 
restoration tasks (Tappen et al. 2007; Cho et al. 2010; Sun et al. 2010; Schmidt and Roth 
2014; McAuley et al. 2006). In Tappen et al. (2007) and Cho et al. (2010), local features 
are utilized to adapt the prior works on local areas in restoration tasks. However, as the 
local features like gradient filter responses (Tappen et al. 2007) and local texture (Cho 
et al. 2010) are usually not striking on weak edges or regions with ambiguous content, 
these local-specific models face inaccurate labeling problems, and the restoration results 
often suffer artifacts. In addition, the models in Tappen et al. (2007) and Schmidt and 
Roth (2014) can only be learned for specific state of the degeneration, which limits the 
range of application. The previous related works trying to approach the content-aware 
prior mainly focus on connecting the contents with some simple features such as sta-
tistics on gradients, since connecting the complex low-level features (e.g., any filter 
responses) with the high-level features representing the scene contents is more difficult. 
Additionally, recently, McAuley et al. (2006) proposed to the high-order MRF prior for 
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Fig. 1  Statistical characteristics change with the variations of image scene/content. Left: two typical real-
world scenes. Middle: the empirical distributions of gradients in the images on left. Right: filter statistics of the 
images with the eight filters learned in Schmidt et al. (2010)
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color images. In Feng et al. (2016), a high-order natural image prior model was proposed 
for reducing the Poisson noise. Ren et.al. (2013) introduced the “context-aware” concept 
into the sparse representation for image denoising and super-resolution. Considering 
the limitation of expression ability of the classical MRF, Wu et.al. proposed to compact 
the MRFs with deep neural networks (Wu et al. 2016).

In a natural image, low-level statistical characteristics are usually generated by the 
contents in the captured scene (Torralba and Oliva 2003). And the scene perception for 
an image is usually more robust than the pixel-level (low-level) characteristics. Based 
on this observation, we focus on developing a scene-aware prior model that can adapt 
the manifolds of the scene-related content in an image globally instead of taking the 
local structures. In this paper, we propose a scene-aware Markov random field (SA-
MRF) model to capture the scene-discriminating statistical prior of any whole natural 
image; the SA-MRF model owes high-order non-Gaussian potential conditioned on a 
scene coefficient extracted from high-level concepts of observations. This is based on 
an assumption that the high-level contents are preserved fairly even in degenerated 
observations. Then related efficient algorithms for learning and inference are proposed. 
Experiments on image restoration tasks, denoising and inpainting, illustrate that the SA-
MRF-based scene-aware image prior captures the image statistic characteristics accu-
rately and improves the quality of images effectively.

Scene‑aware image prior based on MRFs
The purpose of this paper is to build a system, in which (1) a high-order MRF model 
depending on scene content of the image is proposed to model the low-level statistical 
distribution and (2) the observed image can be adapted to a specific proper prior in res-
toration procedure. Overview of the system is illustrated in Fig. 2.
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Fig. 2  Scene-aware prior learning and testing diagram. Scene coefficient is represented by bag-of-words, 
distribution of the bag-of-words descriptors provide scene discrimination in learning process and give scene-
aware guides in testing
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Scene‑aware MRF model

The distribution of natural image x is formulated as a high-order MRF (Schmidt et al. 
2010). To let the scene content information guide the modeling, we introduce an explicit 
scene coefficient as a parameter of the distribution.

Let {Fi}Ni=1 denote a set of filter-based features to capture the low-level characteristics 
of natural images, and f (x) denote the scene content perceiving feature, which is defined 
as the scene coefficient. With the scene coefficient, the probability distribution of the cor-
responding clear image is defined as

where C is the set of maximal cliques (Koller and Friedman 2009) of the MRFs; xc thus 
denotes a subvector of x corresponding to the clique1 c; φ(·) represents the potential 
function; wi is the parameter of the potential function φ(·) which depends on f (x) and 
the parameter θ through a function w(·)2; � is the collection of parameters Fi’s and wi’s; 
and Z(·) denotes partition function normalizing the product of the potential functions 
(Koller and Friedman 2009). Because our MRF model (1) explicitly considers the scene 
content, we call it as scene-aware MRF. Model (1) is called scene-aware prior since the 
parameters of the prior distribution in (1), i.e., wi, depend on he scene coefficient f(x), 
which captures the scene content of a specific image x in practice.

Potential function conditioned on scene coefficient

In (1), the formulation of the potential function is still not given. In this section, we will 
focus on the modeling of the potential function depending on the scene coefficient.

On account of the heavy-tailed filter statistics of natural image, we formulate the non-
Gaussian potential function based on Gaussian scale mixtures (GSMs) models:

where J is the number of mixture components and is set as 15 in this paper; wij is the j 
th component of the parameter vector wi; σ 2

i  and sj denote the base variance and scale 
of Gaussian components, respectively. Following Schmidt et al. (2010), we set the scales 
as s = exp(−9,−7,−5,−4, ...,−1, 0, 1, ..., 4, 5, 7, 9). Benefiting from the mixture of Gauss-
ian formulation in (2), the inference of the model can be simplified due to the conju-
gacy. From (2), the scene coefficient f (x) influences the potential function through the 
weights of Gaussian components wij, and links the low-level characteristics and high-
level properties associated with the contents in the scene. Then we will introduce how to 
build the linkage, and give the definitions of w(·) and f (·).

(1)p(x; f (x), {Fi},�) =
1

Z(�)

∏

c∈C

N
∏

i=1

φ(FTi xc;wi(f (x), θ)),

1  In model (1), if Fi’s are l × l filters, each xc is a l × l subvector in x.
2  We slightly abuse the notation {wi}

N
i=1 as both the parameters of the potentials and the functions wi(f (x), θ).

(2)φ(FTi xc; wi(f (x), θ)) =

J
∑

j=1

wij(f (x), θ) ·N (FTi xc; 0, σ
2
i /sj),
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Link the image x and the scene perception through f (x)

Given a x, an easy way to represent its scene is to assign the discrete labels associated 
with the content (e.g., objects or scene) in x as many scene understanding works (Li 
et al. 2009). However, because there is a bias between the high-level perception of the 
content and the low-level feature [e.g., SIFT (Lowe 2004) and GIST (Oliva and Torralba 
2001)] (Li et al. 2010), even images with same content labels may have dissimilar low-
level statistical distributions. Instead of tackling this issue directly, we try to take advan-
tage of it. Because our task roots in the low-level tasks, we do not need to assign exact 
labels to the contents in the scene. We directly use the Bag-of-words (BoW) histogram of 
SIFT descriptors to toward scene perception. Given an image x, we extract dense SIFT 
(DSIFT) from it and generate DSIFT-BoW histogram with 200 vocabularies as bx. f (x) 
is defined as f (x) = bx. To extract dense SIFT, we run the SIFT feature extractor on a 
dense grid of location covering all locations on an image at a fixed scale and orientation. 
Specifically, in prediction task, given a y, we first roughly recover a clear image x̂(y). For 
example, for noisy observation y, we do denoising via a simple Wiener filter (Sonka et al. 
2014) or Gaussian low-pass filter. Then we extract DSIFT-BoW feature from x̂(y) and 
let bx̂(y) represent the corresponding feature of the latent clear image. The encoder of 
DSIFT-BoW is denoted as D. Note that, a clear image can be roughly recovered using 
some simple methods for extracting the BoW feature as the initialization. But it is not 
good enough to show many pixel-level details.

Link the scene coefficient f (x) and low‑level statistics through w(f (x), θ)

Images containing similar scene contents usually follow similar low-level distributions. 
Based on this observation, for simpleness, we first assume that all images x can be clus-
tered into K clusters w.r.t. f (x). Accordingly, we assign the images to the clusters of 
which the centroids are the closest based on Euclidean distance. The images belonging 
to the k-th cluster is given a tag k and represented as xk. We assume that the training 
images are from a distribution of which the parameters are the combination of K sets 
of parameters {wk

i }. In learning process, we assume each {wk
i } for all k can be learned by 

fitting the observations belonging to the k-th cluster, i.e., {xki }. We define the centroids of 
the each clusters as x′k. Following this, we approximate each wi as a linear combination 
of K principle wk

i :

where κk(·, ·) is a similarity measurement of f (x). We let κk(·, ·) be a simple Gaussian 
kernel:

where σ 2
k  is the band width of the kernel regarding to the k-th cluster. Benefiting from 

this clustering-based representation, the distribution model (1) can be learned efficiently 
(see “Learning algorithm” section).

(3)wi(f (x); θ) =

K
∑

k=1

κk(f (x), f (x
′
k)))w

k
i

(4)κ(f (x), f (x′k)) = exp

{

−
1

2

[

�f (x)− f (x′k)�22
σ 2
k

]}
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Learning algorithm

In this section, we will introduce an efficient learning algorithm that estimates model 
parameters from high-quality training samples, and inference algorithm for image 
restoration.

Given a set of training images, {xt}Tt=1, the parameters of the model � and low-level 
features {Fi} are estimated by maximizing the likelihood on the training data. We 
maximize the likelihood through minimizing the Kullback–Leibler divergence (KLD) 
between the model and empirical distribution of training data.

Substituting (2) into (1), the log-likelihood of observations is formulated as

Note that in our model, the filters Fi’s are shared by all images in K different clusters, 
while the weights wk

i ’s are different for K different clusters.
Relying on the clustering based definition of wi, the whole learning scheme comprises 

two steps: (1) calculating κ(f (xt), f (x′k)) for all images, and (2) estimating {Fi} and {wk
i } . 

Firstly, we extract dense SIFT features from {xt}, build the encoder dictionary D, and 
generate DSIFT-BoW features bx for all images. Secondly, we cluster images w.r.t. {bxt } 
using Gaussian mixture model (GMM). We let bk denote the centers of k-th clusters, 
and σ 2

k  in (4) be the average of the diagonal of the covariance of the corresponding k-
th Gaussian distribution. With the clustering result, κ(f (xt), f (x′k)) can be easily com-
puted. Lastly, we estimate {Fi} and {wk

i } via contrastive divergence learning (CD) with 
one-step sampling (Hinton 2002) and stochastic gradient descent algorithm (SGD) (Bot-
tou 2010). Taking partial derivatives of the energy function (5) w.r.t. the parameters leads 
to the following update:

where ∂E(xt )
∂Fi

 is the derivative w.r.t. Fi at xt, and Ep(x;{Fi},�)(x) is the expectation value 
w.r.t. the model distribution.

An auxiliary-variable-based Gibbs sampler (Schmidt et al. 2010) is used to draw sam-
ples from the model distribution. The expectation can be calculated by averaging over 
the samples. Full learning scheme is illustrated in Algorithm 1.

(5)

E({xt}, {Fi},�) = −

T
�

t

�

c∈C

N
�

i=1

log(φ(FTi xt,c;�))

= −

T
�

t

�

c∈C

N
�

i=1

log







J
�

j=1

�

K
�

k=1

κ(f (xt), f (x
′k))wk

ij

�

N (FTi xt,c;
σ 2
i

sj
)







.

(6)

δFi ∝ −
1

T

T
∑

t

∂E(xt)

∂Fi
+ Ep(x;{Fi},�)(x), ∀i

δwk
i ∝ −

1

T

T
∑

t

∂E(xt)

∂wk
i

+ Ep(x;{Fi},�)(x), ∀k , i
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Algorithm 1: Learning SA-MRF
Input: Training image set {xt}, number of cluster K
Output: DSIFT-BoW encoder D, {bk}, {wk

i }, {σ2
k}

1 Build encoder D and generate {bxt} from {xt};
2 Cluster {bxt} via GMM, get {bk}, {σ2

k}, and assign {xk
t };

3 Estimate {Fi} and {wk
i } by minimizing (5) through CD and SGD;

4 return

Applications and experiments
To evaluate the modeling ability of the scene-aware prior on real-world image directly, 
we evaluate the performance of the learned prior on image denoising and image inpaint-
ing. Before the evaluation, we will first introduce some implementation details for learn-
ing the scene-aware image prior and the learned model in this paper. Following that, we 
then revisit the standard Bayesian restoration formulation and derive an MMSE estima-
tion approach for our scene-aware image prior.

Learning details and learning results of the SA‑MRF

To learn the MRF model, 450 images in Berkeley Segmentation Database (BSD500) 
(Martin et al. 2001) are exploited as the training dataset. The training images are trans-
ferred to gray-scale. In learning procedure, the scene coefficients, e.g., dense BoW vec-
tors, are extracted from each whole image for data clustering. Nevertheless, 10 patches 
with size 50× 50 are cropped randomly from each image to update the low-level MRF 
model parameter. Note that, the testing images are excluded from training dataset. The 
number of GMM mode is set as K = 4 in this paper. Before extracting DSIFT for both 
learning and prediction, images are smoothed with a Gaussian kernel whose standard 
deviation is set as 1.0.

When we set the number of GMM mode K as 4, the training images are split into four 
sets. We randomly select several representative samples from each cluster and illustrate 
them into Fig. 4. As shown in Fig. 4, images within same clusters have closed appear-
ances; conversely, images in different clusters have different visual properties. Although 
the clustering result does not follow the contents strictly, it reflects the low-level proper-
ties properly. For example, in Fig. 4, the cluster on the left contains a lot of clear and flat 
background areas, and the right bottom one has more complex textures and clutters. 
The clustering result provides a preferred intermediate result to let the algorithm learn 
diverse and meaning-full features and distributions. As a result, the learned filters and 
four sets of experts (potential functions) are shown in Fig. 3. Figure 3a shows the learned 
filters, and b–e are the learned weights and curves of the potential functions for the four 
clusters, respectively. Comparing to the learning result in Schmidt et al. (2010), our fil-
ters have a wider variant region, and the experts have more spiky peak and heavy tail, 
which reserve the favored image in a narrower region.

Bayesian image restoration formulation

Given an observed image y, which is assumed to be degenerated from a latent high-
quality image x. The distribution of x follows the model in Eq. (1) conditioned on the 
scene coefficient f (x). The restoration algorithm consists of two steps: (1) generating 
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bx̂(y) based on “Potential function conditioned on scene coefficient” section and learned 
DSIFT-BoW encoder D, and calculating κ(f (x̂(y)), f (x′k)), and (2) estimating the x̂ with 
the MRF model by computing the Bayesian minimum mean squared error estimation 
(MMSE) through Gibbs sampling:

-9 -7 -5 -4 -3 -2 -1 0 1 2 3 4 5 7 9
0

0.2

0.4

0.6

0.8

1

-250 -200 -150 -100 -50 0 50 100 150 200 250

-9 -7 -5 -4 -3 -2 -1 0 1 2 3 4 5 7 9
0

0.2

0.4

0.6

0.8

1

-250 -200 -150 -100 -50 0 50 100 150 200 250

-9 -7 -5 -4 -3 -2 -1 0 1 2 3 4 5 7 9
0

0.2

0.4

0.6

0.8

1

-250 -200 -150 -100 -50 0 50 100 150 200 250

-9 -7 -5 -4 -3 -2 -1 0 1 2 3 4 5 7 9
0

0.2

0.4

0.6

0.8

1

-250 -200 -150 -100 -50 0 50 100 150 200 250

b c

ed

a

Fig. 3  Learned scene-aware MRF prior. a Filters shared by images with different scene contents. b–e Learned 
four sets of weights of the potential functions and the shape of each experts

Fig. 4  Samples from the clusters assigned to the different GMM modes in learning process. In this example, 
the number of GMM mode K is set as 4
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where p(x|y; {Fi},w) means the image prior distribution from the MRF model in Eq. (1) 
with calculated κ(f (x̂(y)), f (x′k)). A posterior version of auxiliary-variable Gibbs sam-
pler is imposed to sample the GSM scale and the latent image iteratively (Schmidt et al. 
2010).

Evaluation on image denoising

We focus on comparing our denoising results to the reconstructs relying on the state-of-
the-art generative MRF prior in Schmidt et al. (2010) and another broadly used denois-
ing technique BM3D (Dabov et al. 2007), using peak signal-to-noise ratio (PSNR) and 
gray-scale structural similarity (SSIM) (Wang et al. 2004). Denoising results on 10 test 
images in BSD500 are illustrated. We consider the restoration performances on Gauss-
ian noise at two levels: σ = 10 and σ = 25 (Schmidt et  al. 2010). Note that, the noise 
levels are corresponding to the images in scale [0, 255]. Considering the space limitation, 
we only illustrate the 10 noisy images with σ = 25 in Fig. 5. 

Figure 6 illustrates the numerical comparison of denoising results among the BM3D 
method (Dabov et al. 2007), learned image priors in Schmidt et al. (2010) and Schmidt 
and Roth (2014) and the proposed scene-aware prior. For fairness, regarding the model 
in Schmidt and Roth (2014), we use the version with 3× 3 filters, which is same with 
the settings for the other learning-based method [MRF model in Schmidt et al. (2010) 
and the proposed method]. The scene-aware prior has a stable superiority on nearly all 
test images. And the performances of the two MRF prior-based methods are better than 
that of BM3D. When the noise level is σ = 25, the recovering results of scene-aware 
prior exceed the results of another two. Because the scene-aware prior model captures 
the statistical characteristic of natural image more preciously. When real details and 
textures are degenerated heavily, the scene-aware prior gives more benefits for recov-
ering texture details and hallucinating the lost information. Figure  7 shows denoising 
results on test image goat, proposed method recovers the details better and avoids the 
fake texture which appears in the results of Schmidt et al. (2010). Without comparison 
with the ground truth, these fake details in the result of Schmidt et  al. (2010) can be 
easily recognized as real details, because they satisfy the average perspective of humans 

(7)x̂ = arg min
x′

∫

x

�x′ − x�2p(x|y; {Fi},wi)dx

Fig. 5  Testing images with zero-mean Gaussian noise (σ = 25)
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on the concept of “natural” image. Figure 8 demonstrates recovering results of the gen-
erative MRF prior and our scene-aware prior. Scene-aware prior recovers more detail 
informations.

When the noise level is low (σ = 10), the performance of the scene-aware prior is very 
similar with Schmidt et al. (2010). It can be explained as that there is always noise that is 
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Fig. 6  Image denoising results. a, c show the PSNR and SSIM values of the results on the images with noise 
level σ = 10. b, d show the PSNR and SSIM values of the results on the images with noise level σ = 25. BM3D 
(Dabov et al. 2007), the generative MRF model of Schmidt et al. (2010), shrinkage fields-based method of 
Schmidt and Roth (2014) and the proposed scene-aware prior are compared

Fig. 7  Denoising results on test image goat with σ = 25. Noisy image: PSNR=19.51dB, SSIM = 0.42; result of 
BM3D (Dabov et al. 2007): PSNR = 22.43 dB, SSIM = 0.51; Result of generative MRF prior (Schmidt et al. 2010): 
PSNR = 26.27 dB, SSIM = 0.69; Our result (scene-aware prior): PSNR = 26.43 dB, SSIM = 0.70. The proposed 
method recovers the texture in green box best
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hard to be removed; and both the prior in Schmidt et al. (2010) and ours reach the latent 
limitation of similar algorithms. An example for visual illustration is shown in Fig. 9. As 
shown in Fig. 9, our result is much more closed to the ground truth than others. Hence, 
although the scene-aware prior and the MRF model learned in Schmidt et al. (2010) are 
closed to each other on the numerical evaluation, the proposed method can achieve 
more natural and accurate results, which illustrates the power of the scene-aware con-
cept in prior learning.

Evaluation on image inpainting

Image inpainting is to recover a high-quality image from a degenerated image in which 
part of the image pixels is lost or deteriorated. Apart from the image denoising task, we 
also test the proposed method on image inpainting in this section. As shown in Fig. 10, 
a part of an image is crimped and deteriorated due to folding, which is used as the input 
image in this experiment. Given a binary mask indicating the deteriorated pixels, the 
MRF model in Schmidt et al. (2010) and the proposed scene-aware prior both work well 
on recovering an intact image. The result of the proposed however is more natural, espe-
cially on the pixels near the crimps in the original image. Since the ground-truth image 
for the real-world deteriorated image, only the visual comparison is illustrated in Fig. 10.

Fig. 8  Denoising results on test image fireman with noise level σ = 25. From left to right: result of gen-
erative MRF prior (Schmidt et al. 2010): PSNR = 28.01 dB, SSIM = 0.83; Our result (scene-aware prior): 
PSNR = 28.18 dB, SSIM = 0.85; and ground truth

Fig. 9  Denoising results on test image airplane with noise level σ = 10. From left to right: noisy image; result 
of BM3D: PSNR = 34.89, SSIM = 0.853; result of generative MRF prior (Schmidt et al. 2010): PSNR = 40.64 dB, 
SSIM = 0.969; our result (scene-aware prior): PSNR = 41.17 dB, SSIM = 0.974; and ground truth
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Conclusion and future work
The proposed high-order MRF-based scene-aware image prior models the low-level dis-
tribution of image conditioned on high-level scene characteristic of observations, and 
improves the restoration of the degenerated observations. Experimental results demon-
strate that the proposed method can generate desirable restoration results.

Our work provides a possible path bridging the low-level prior learning and high-
level concept, and proves that the idea can achieve better results than the state-of-the-
art methods in similar settings. However, at the same time, it opens up several possible 
directions for future research:

• • Our proposed model learns low-level features in a small local area, and use the sim-
ple DSIFT-BoW to express the high-level scene concept, which restricts the expres-
sion ability of the model. Embedding the proposed method with the deep convolu-
tional neural network, Bengio et al. (2013) might enable higher expression ability.

• • We evaluated the efficiency of the proposed method on image denoising and inpaint-
ing tasks. In the future, we may extent this work to more applications tasks, including 
image superresolution, image deblurring, optical flow, etc.

Authors’ contributions
DG drafted the manuscript. YZ, QY, and HL participated in its design and coordination and/or helped to revise the manu-
script. All authors read and approved the final manuscript.

Acknowledgements
This work was supported in part by National Natural Science Foundation of China (61231016, 61572405), China 863 
Project 2015AA016402.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 August 2017   Accepted: 16 October 2017

References
Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal 

Mach Intell 35(8):1798–1828
Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings of COMPSTAT’2010. 

Springer, Berlin, pp 177–186
Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective image restoration. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. pp 5261–5269

Fig. 10  Evaluation on image inpainting. From left to right: the degenerated image, mask indicating the 
degenerated part, results of the generative MRF prior (Schmidt et al. 2010), results of the proposed scene-
aware prior. Best viewed magnified on screen



Page 13 of 13Gong et al. Appl Inform  (2017) 4:12 

Cho TS, Joshi N, Zitnick CL, Kang SB, Szeliski R, Freeman WT (2010) A content-aware image prior. In: IEEE conference on 
computer vision and pattern recognition (CVPR)

Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. 
In: IEEE transactions on image processing

Feng W, Qiao H, Chen Y (2016) Poisson noise reduction with higher-order natural image prior model. SIAM J Imaging Sci 
9(3):1502–1524

Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph. In: 
ACM transactions on graphics (TOG)

Gong D, Tan M, Zhang Y, van den Hengel A, Shi Q (2016) Blind image deconvolution by automatic gradient activation. In: 
IEEE conference on computer vision and pattern recognition (CVPR)

Gong D, Yang J, Liu L, Zhang Y, Reid I, Shen C et al (2017) From motion blur to motion flow: a deep learning solution for 
removing heterogeneous motion blur. In: The IEEE conference on computer vision and pattern recognition (CVPR)

Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural computation
Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, Cambridge
Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-Laplacian priors. In: NIPS
Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: IEEE conference on com-

puter vision and pattern recognition (CVPR)
Levin A, Fergus R, Durand F, Freeman WT (2007) Image and depth from a conventional camera with a coded aperture. 

ACM Trans Gr 26:70
Levin A, Weiss Y, Durand F, Freeman WT (2009) Understanding and evaluating blind deconvolution algorithms. In: IEEE 

conference on computer vision and pattern recognition (CVPR)
Li LJ, Socher R, Fei-Fei L (2009) Towards total scene understanding: classification, annotation and segmentation in an 

automatic framework. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE, New 
York

Li LJ, Su H, Fei-Fei L, Xing EP (2010) Object bank: a high-level image representation for scene classification & semantic 
feature sparsification. In: Advances in neural information processing systems

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. In: IEEE international conference on computer 
vision (ICCV)

Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluat-
ing segmentation algorithms and measuring ecological statistics. In: IEEE international conference on computer 
vision (ICCV)

McAuley JJ, Caetano TS, Smola AJ, Franz MO (2006) Learning high-order mrf priors of color images. In: Proceedings of the 
23rd international conference on machine learning. ACM, New York, pp 617–624

Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput 
Vis 42(3):145–175

Ren J, Liu J, Guo Z (2013) Context-aware sparse decomposition for image denoising and super-resolution. IEEE Trans 
Image Process 22(4):1456–1469

Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. In: IEEE conference on computer vision 
and pattern recognition (CVPR)

Samuel KGG, Tappen MF (2009) Learning optimized MAP estimates in continuously-valued MRF models. In: IEEE confer-
ence on computer vision and pattern recognition (CVPR)

Schmidt U, Gao Q, Roth S (2010) A generative perspective on MRFs in low-level vision. In: IEEE conference on computer 
vision and pattern recognition (CVPR)

Schmidt U, Jancsary J, Nowozin S, Roth S, Rother C (2014) Cascades of regression tree fields for image restoration
Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: IEEE conference on computer vision and 

pattern recognition (CVPR)
Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning, Boston
Sun J, Zhu J, Tappen MF (2010) Context-constrained hallucination for image super-resolution. In: IEEE conference on 

computer vision and pattern recognition (CVPR)
Tappen MF, Liu C (2012) A Bayesian approach to alignment-based image hallucination. In: ECCV
Tappen MF, Liu C, Adelson EH, Freeman WT (2007) Learning Gaussian conditional random fields for low-level vision. In: 

IEEE conference on computer vision and pattern recognition (CVPR)
Torralba A, Oliva A (2003) Statistics of natural image categories. Netw Comput Neural Syst 14:391–412
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. 

In: IEEE transactions on image processing
Weiss Y, Freeman WT (2007) What makes a good model of natural images? In: IEEE conference on computer vision and 

pattern recognition (CVPR)
Wu Z, Lin D, Tang X (2016) Deep Markov random field for image modeling. In: European conference on computer vision. 

Springer, Berlin, pp 295–312
Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring. In: IEEE conference on com-

puter vision and pattern recognition (CVPR). IEEE, New York, pp 1107–1114
Zhang H, Wipf D, Zhang Y (2013) Multi-image blind deblurring using a coupled adaptive sparse prior. In: IEEE conference 

on computer vision and pattern recognition (CVPR)


	Learning scene-aware image priors with high-order Markov random fields
	Abstract 
	Introduction
	Scene-aware image prior based on MRFs
	Scene-aware MRF model
	Potential function conditioned on scene coefficient
	Link the image  and the scene perception through 
	Link the scene coefficient  and low-level statistics through 

	Learning algorithm

	Applications and experiments
	Learning details and learning results of the SA-MRF
	Bayesian image restoration formulation
	Evaluation on image denoising
	Evaluation on image inpainting

	Conclusion and future work
	Authors’ contributions
	References




