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Background
Face alignment (Liu et al. 2017b, 2017c; Zhang et al. 2016; Zhu et al. 2015) has gained 
much attention in facial recognition (Duan et  al. 2017; Lu et  al. 2017) and computer 
vision areas (Hu et al. 2017; Liu et al. 2017a), which aims to densely localize a set of posi-
tions of semantic facial landmarks such as eyes, nose, chin, etc. While extensive efforts 
have been devoted to face alignment, the performance is still not satisfactory espe-
cially when face samples were captured under wild conditions, duo to large variations 
of diverse facial expressions, aspect ratios, and partial occlusions. Motivated by this, a 
robust face alignment method should be proposed to address the previous limitations.

Conventional face alignment methods can be roughly divided into two categories: the 
holistic models and the local models. The representative holistic models include active 
shape model (ASM) (Cootes et al. 1995) and active appearance model (AAM) (Cootes 
et al. 2001). Both methods aim at maximizing the joint posterior probability over land-
marks for the given facial images. However, these methods cannot explicitly exploit 
the local details during facial shape refinement, which exhibits the important cues 
for face alignment. The representative local models, such as the local constrained 
model (LCM) (Cootes et al. 2012), focus on modeling the constraint shape model locally. 
While local features are utilized to transform and vote for facial landmark detection, the 
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performance is still far from being practically satisfactory in such cases, because face 
samples undergo large variances of aspect ratios and occlusions in the real-world appli-
cation. To circumvent this problem, cascaded regression-based methods have been pro-
posed to learn a series of nonlinear feature-to-shape mappings and further estimate the 
positions of facial landmarks in a coarse-to-fine manner. For example, Cao et al. (2012) 
proposed an explicit shape regression (ESR) model to address the cascaded regression 
problem by means of boosting tree. Xiong and la Torre (2013) proposed a supervised 
decent model  (SDM) to relax the nonlinear regression optimization by leveraging a 
series of linear regression functions cascaded. However, the employed features are hand-
crafted, which may lose crucial shape-informative details, and even the performance 
degrades in uncontrolled environments. To address this limitation, Sun et al. (2013) pro-
posed a deep convolutional network-cascaded  (DCNC) method to predict facial land-
marks by integrating both tasks of shape initialization and shape update. Zhang et  al. 
(2014) developed a coarse-to-fine auto-encoder network  (CFAN) architecture for face 
alignment, which exploits the image-to-shape mappings by leveraging multilayer neu-
ral networks. Nevertheless, these deep learning methods separately learned network 
parameters for each stage, which may lead to the suboptimal solution during back-prop-
agation procedure.

In this study, we propose an end-to-end multiscale recurrent regression net-
works  (MSRRN) approach for face alignment. Unlike conventional face alignment 
methods utilizing handcrafted features which requires strong prior knowledge by hand, 
our MSRRN model aims at jointly optimizing both tasks of learning shape-informative 
local features and localizing facial landmarks in a unified deep convolutional neural 
networks. As illustrated in Fig.  1, we carefully design a recurrent regression network 
to transform shape-index local raw patches to the spacial coordinates of facial shape, 
where the network parameters between stages are shared across different stages. As a 
result, the refinement descents for each stage are memorized, and the capacity of deep 
architecture is well controlled. To further improve the face alignment performance, our 
model is equipped with a multiscale schema to exploit the complementary information 

Fig. 1  The framework of our proposed MSRRN. Our MSRRN consists of two stages: shape initialization and 
shape update. Accordingly , the shape initialization aims to estimate a rough facial shape for a given face 
image under a convolutional neural network. The shape update stage attempts to refine facial shape based 
on the initial shape and shape-index pixels progressively. Moreover, our MSRRN shares the network param-
eters across different stages and involves multiscale information to reinforce our model for accurate facial 
landmark localization. Since our MSRRN network learns directly from raw pixels, the network parameters are 
optimized via back-propagation in an end-to-end manner



Page 3 of 11Wang et al. Appl Inform  (2017) 4:13 

from multiscale inputs during facial landmark localization. To show the effectiveness of 
our proposed MSRRN, we conduct experiments on the standard benchmarking data-
set 300-W including the LFPW, HELEN, and IBUG datasets, where 68 landmarks were 
employed for evaluation. "Experimental results" show that our proposed MSRRN per-
forms face alignment in a robust manner compared with most of the state-of-the-art 
methods.

Proposed method
Unlike conventional cascaded regression-based methods which sequentially learn the 
stagewise shape regressors and may cause suboptimal performance during training pro-
cess, we propose an end-to-end multiscale recurrent regression networks approach for 
face alignment. Specifically, we carefully design regression schema to model image-to-
shape relationship via deep convolutional neural networks, and at the same time, learn 
to automatically characterize shape-sensitive local features directly from raw pixels. To 
achieve this goal, our model leverages a recurrent framework by sharing the network 
parameters in order to preserve the consistency of information across each stage. More-
over, we extend our architecture to a multiscale method, which involves obtaining com-
plementary information from multiscale face inputs in a coarse-to-fine manner. In the 
next section, we will describe the formulation and optimization procedure of the pro-
posed method.

Let S = [x1, y1, . . . , xl , yl , . . . , xL, yL]
T denote a facial shape with a set of facial land-

marks; typically, L was specified to be 68 in this paper, where (xl , yl) represents the spa-
tial coordinates of the Nlth facial landmark. Given the training set {(In, Sn)}Nn=1 which 
consists of N data points , where In denotes the nth face image and Sn is its ground-truth 
facial shape, the goal of face alignment is to estimate a shape S that is as close in resem-
blance as possible to the real facial shape on the input face image I. The final shape esti-
mation is refined based on the initial shape and facial image features progressively:

where S0 denotes the initial shape, St denotes the final shape estimation, T is the total 
stage number, and f t(·, ·) denotes the image-to-shape mapping  (basically, a regression 
function) for the tth stage.

The crucial part is to learn the regression function. The basic idea of our objective is to 
minimize the residual of initial shape and ground-truth shape for each stage. This ena-
bles the facial shape to be refined as close as possible to the real shape in a course-to-fine 
manner. In terms of the regression method, we leverage a series of nonlinear functions 
to transform the raw facial images to the targeted facial shape. Figure 2 shows the speci-
fication of the employed network architecture. Our network is equipped with a set of 
convolutional layer, pooling layer, and fully connected layers. Hence, we compute the 
predicted shape residual based on the deep network structure as follows:

(1)ST = S0 +

T
∑

t=1

f t(I , St−1),

(2)f (Ii, S
t−1) = pool (ReLU(W ⊗ φi + b)),
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where ⊗ denotes the convolution operation, pool(·) denotes the max pooling operation, 
and ReLU(·) denotes the rectifier nonlinear function. For φi, we utilize the shape-index 
local patch, which is computed as follows:

where ◦ denotes the sampling operation resulting shape-index local patches based on the 
given initial shape. Note that the shape-index features implicitly exploit the shape con-
straints for the holistic regression.

To achieve this, we formulate our objective which aims at minimizing the following 
optimization:

where � · �22 denotes the L2 norm to measure the distance of any two shapes in the Euclid-
ean space, and S∗ represents the manually labeled landmarks.

Since conventional face alignment methods seek different parameters of f (·, ·) for 
different stages t, the learning strategy encounters parameter scalability problem. To 
address this issue, we propose a recurrent network architecture, where the parameters 
between different stages are shared. As a result, the descents of facial landmarks during 
each stage are memorized and involved for further refinement. Moreover, we extend our 
proposed model to a multiscale framework, which aims at exploiting the complemen-
tary information received from multiscale face inputs and localizing facial landmarks in 
a coarse-to-fine manner. Hence, we revise our formulation based on (4) as follows:

(3)φi = Ii ◦ S
t−1,

(4)arg min
f

N
∑

i=1

T
∑

t=1

∥

∥

∥
f t
(

Ii, S
t−1

)

−

(

S∗ − St−1
)∥

∥

∥

2

2
,

(5)J = min
f

N
∑

i=1

T
∑

t=1

∥
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(

I
(t)
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)
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2
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Fig. 2  The specification of our designed network. Specifically, our network is fed with a set of sampled local 
patches as input, and then these patches are passed forward onto a series of operations including two small 
convolutional layers, ReLU rectifier function, and fully connected layers. The output of the network results in a 
136-dimension vector, which denotes the coordinates of 68 facial landmarks
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where ‖W‖22 is employed to reduce the model complexity which prevents the learning 
procedure from overfitting, I (t) denotes the scaled face input (we downscale three times 
during learning procedure, thus we specified T to 3 in our experiments.), and � is the 
hyper-parameter to balance the objective term and the model regularization term. Note 
that the parameters of these regression functions fRRN(·, ·) are shared across different 
stages.

To solve the optimization problem in (5), we leverage the stochastic gradient-decent 
method to compute the gradients. Specifically, for each iteration, we first pass the 
batched data forward onto the unrolling network, and compute the immediate and top 
layer results. Then we propagate these results back to the network and perform the gra-
dients. Having obtained the gradients, the network parameters W and b are updated by 
averaging the gradients of different stages. The update procedure is performed using the 
gradient-decent algorithm as follows until convergence:

where η is the learning rate, which controls the convergence speed of the objective func-
tion (5). Algorithm 1 shows the optimization procedure of MSRRN.

Algorithm 1: MSRRN
Input: Training set X, stage number T (T = 3), iterative number Γ , and convergence

error ε.
Output: Weights: {W}.
Step 1: Parameters Initialization.
Step 2: Optimization by back-prorogation:
for i = 1, 2, · · · , Γ do

Randomly select a batch of X.
// Forward propagation
for 1, 2, · · · , T do

Perform forward propagation.
end
// Computing gradients
for T, T − 1, · · · , 1 do

Perform gradients by back-propagation on W.
end
// Back propagation
Perform summation for stage-wise gradients.
for m = 1, 2, · · · , T do

Update {W} by (6) and (7) by averaging gradients
end
Calculate Ji using (5).
If i > 1 and |Ji − Ji−1| < ε, go to Return.

end
Return: {W}.

During inference process, we feed a batch of face data to the trained network, and 
predict the positions of facial landmarks. It is notified that we further propose a CNN, 
which aims to predict a initial shape for a given face image. Then the face images with 

(6)W = W − η
∂J

∂W
,

(7)b = b− η
∂J

∂b
,



Page 6 of 11Wang et al. Appl Inform  (2017) 4:13 

the initial shape are taken as inputs to the proposed recurrent regression network to 
localize the facial landmarks cascaded. The detailed procedure is shown in Fig. 1.

Experimental results and discussions
Datasets

To show the effectiveness of our approach, we conducted experiments on the stand-
ard benchmarking dataset 300-W   (http://ibug.doc.ic.ac.uk/resources/300-W/) includ-
ing LFPW, HELEN, and IBUG, where 68 landmarks were employed for evaluation. All 
the face images were collected from the Internet and captured under wild conditions. 
Specifically, the LFPW dataset consists of 811 training images and 224 testing images. 
The HELEN dataset contains 2000 training images and 330 testing images. There are 
135 images in the IBUG dataset, which are exposed to larger variances of diverse facial 
expressions, aspect ratios, and partial occlusions. Note that we make the union of the 
LFPW testing set and HELEN testing set as the common set, and the union of the com-
mon set and IBUG samples as the full set. We also dubbed IBUG set as the challenging 
set.

Implementational details and evaluation protocols

For each face image to be evaluated, we detected the face bounding box by the DLIB 
image processing library. Having obtained the cropped face images, we rescaled them in 
the sizes of 200 × 200, 100 × 100, and 50 × 50, respectively. Moreover, we normalized 
the ground-truth coordinates of facial landmarks in the range of [0, 1]. For all experi-
ments, our network was trained on the 3148 training images of the LFPW and HELEN 
datasets. To further improve the performance, we augmented the training samples by 
adding per-pixel Gaussian noise of σ = 0.5, flipping and finally with random in-plane 
rotations ± 15° from a uniform distribution.

We employed twofolds of evaluation protocols: the averaged error comparisons and 
cumulative error distribution (CED) curves. The averaged error is computed by averag-
ing the normalized root mean-squared error  (NRMSE), which is used to measure the 
point-to-point distance normalized by the Euclidean distance of pupils of eyes. The CED 
curve is utilized to qualitatively evaluate the NRMSE errors, which demonstrates the 
detected image fractions with respect to the specific NRMSE values.

Experimental results

Comparisons with state‑of‑the‑art methods

In our experiments, we compared our methods with 12 state-of-the-art face align-
ment methods including FPLL (Zhu and Ramanan 2012), DRMF (Asthana et al. 2013), 
RCPR (Burgos-Artizzu et al. 2013), SDM (Xiong and la Torre 2013), GN-DPM (Tzimi-
ropoulos and Pantic 2014), ESR (Cao et al. 2012), LBF (Ren et al. 2014), ERT (Kazemi 
and Sullivan 2014), CFSS (Zhu et al. 2015), CFAN (Zhang et al. 2014), BPCPR (Sun et al. 
2015) and TCDCN (Zhang et al. 2016). Table 1 tabulates comparisons of the averaged 
errors of our method to those state-of-the-art methods, where the results were directly 
cropped from the original papers. From these results, we see that our model achieves 
significantly superior performance compared to those state-of-the-art methods. Moreo-
ver, we carefully implemented DRMF, RCPR, CFAN, TCDCN, and CFSS by following 

http://ibug.doc.ic.ac.uk/resources/300-W/
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the implementation details provided in their respective original studies. Figure 3 shows 
the CED curves of our method compared with the state-of-the-art methods. Accord-
ing to these results, we see that our method obtains very competitive performance on 
face alignment, which shows the effectiveness of the proposed method. In particu-
lar, our model achieves better performance compared with the handcrafted features, 
which shows the discriminativeness of the learned features from image pixels (Fig. 4). 
Moreover, our model outperforms the deep learning methods, which shows the advan-
tages of the proposed recurrent architectures and multiscale network. Besides, we show 
results of some examples for face alignment in Fig. 5 and demonstrate that our proposed 
method performs in a robust manner with regard to varying facial expressions, aspect 
ratios, and diverse occlusions under the unconstrained environments.

Performance effects with different stages

We have also conducted experiments of our MSRRN with different stages. Specifically, 
we first leveraged the meanshape as the baseline method. Then we compared our model 
with different stages, where the number of stages were specified as {1, 2, 3}. Table 2 tabu-
lates the averaged error comparisons of our method with different stages and Figure 4 
demonstrates the results. According to these results, we see that more stages improves 
the face alignment performance. The reason is twofold: (1) this cascaded method 
improves the face alignment performance in a coarse-to-fine manner, which is consist-
ent with the results in cascaded regression methods (Cao et al. 2012; Xiong and la Torre 
2013; Zhang et al. 2014; Zhu et al. 2015); and (2) our model takes advantages of multi-
scale information, which complements multiscale cues for facial landmark localization. 
Note that three stages setting is enough for the practical applications.

Table 1  Comparisons of  averaged errors of  our MSRRN with  different face alignment 
methods on the 300-W dataset, where 68 landmarks were employed for evaluation

The italic values denote the highest performance

Method LFPW HELEN CommonSet ChallengingSet FullSet

FPLL (Zhu and Ramanan 2012) 8.29 8.16 8.22 18.33 10.20

DRMF (Asthana et al. 2013) 6.57 6.70 6.65 19.79 9.22

RCPR (Burgos-Artizzu et al. 2013) 6.56 5.93 6.18 17.26 8.35

GN-DPM (Tzimiropoulos and Pantic 2014) 5.92 5.69 5.78 – –

SDM (Xiong and la Torre 2013) 5.67 5.50 5.57 15.40 7.50

CFAN (Zhang et al. 2014) 5.44 5.53 5.50 – –

ERT (Kazemi and Sullivan 2014) – – – – 6.40

BPCPR (Sun et al. 2015) – – 5.24 16.56 7.46

ESR (Cao et al. 2012) – – 5.28 17.00 7.58

LBF (Ren et al. 2014) – – 4.95 11.98 6.32

LBF fast (Ren et al. 2014) – – 5.38 15.50 7.37

Deep reg (Shi et al. 2014) – – 4.51 13.80 6.31

CFSS (Zhu et al. 2015) 4.87 4.63 4.73 9.98 5.76

CFSS prac (Zhu et al. 2015) 4.90 4.72 4.73 10.92 5.99

TCDCN (Zhang et al. 2016) 4.57 4.60 4.80 8.60 5.54

MSRRN 3.98 3.71 3.83 7.25 4.84
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Fig. 3  The CED curves of our method compared with different face alignment approaches on the LFPW, 
HELEN, and IBUG datasets respectively, where 68 landmarks were employed for evaluation
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Fig. 4  The CED curves of our method compared with different stages on the LFPW, HELEN, and IBUG data-
sets respectively, where 68 landmarks were employed for evaluation
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Computational time

Our model was built based on the GPU-accelerated TensorFlow deep learning toolbox, 
which is convenient for designing and implementation of the directed acycle graph-
based network architectures. The computational time required for training procedure 
is 10 h with a GPU of NVIDIA GTX 1080 graphic computation card for 10,000 itera-
tions. Moreover, we tested our method on GPU during inference process, and it takes 
100 frames per second, which satisfies the real-time requirements. We also tested our 
method with the core-i7 CPU@3.6GHZ platform. Our model runs at 10 images per sec-
ond on a CPU@3.6GHZ platform.

Conclusion
In this paper, we have proposed a multiscale recurrent regression network  (MSRRN) 
method for face alignment. Specifically, we have leveraged feedback deep architecture 
to memorize the descent to pass across consecutive stages via the recurrent neural net-
works. Moreover, the proposed MSRRN exploits the complementary information from 
multiscale faces in a coarse-to-fine manner. The network parameters are optimized by 
the standard back-propagation algorithm. Extensive results on public benchmarking 
datasets have validated the effectiveness of the network decisions of making full access 

Fig. 5  Results of some examples of our method on the LFPW, HELEN, and IBUG datasets, where 68 landmarks 
were employed. While the face samples are exposed to diverse facial expressions, aspect ratios, and varying 
partial occlusions, our method performs in a robust manner with regard to these challenging situations due 
to the designed features in our multiscale and recurrent network model

Table 2  Averaged error comparisons and  percentages of  images  (CED) of  our model 
with  different stages, where  the RMSEs are less than  0.05 and  0.1 of  our model on  the 
LFPW, HELEN, and IBUG datasets

The italic values denote the highest performance

Datasets Meanshape Stage = 1 Stage = 2 Stage = 3

300-W fullSet 19.52 6.64 5.16 4.84
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to multiple scales. It is promising to apply the recurrent architectures to video-based 
face alignment by incorporating with the dependency information across frames.
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