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Introduction
Schizophrenia is a complex syndrome lacking integration between thought, emotion, 
and behavior cognitive and affective deficits (Fornito et  al. 2012). The disease affects 
nearly 1% of the world’s population (McGrath et al. 2008). Early diagnosis can signifi-
cantly improve treatment response and reduce associated costs (McGlashan 1998). 
The absence of stable and reliable biomarkers makes current diagnosis of schizophre-
nia, which mainly relies on clinical manifestations by experienced clinician, a challeng-
ing task (Nieuwenhuis et al. 2012). In recent years, fMRI has turned out a powerful tool 
to study psychosis. Especially, resting-state functional connectivity, in the absence of 
explicit task, captures a spontaneous, stable, and intrinsic property of brain functional 
organization (Shehzad et  al. 2009; Fox and Raichle 2007). Dysfunctional connectivity 
in resting state was found in schizophrenia patients (Woodward et al. 2011; Whitfield-
Gabrieli et al. 2009; Rotarska-Jagiela et al. 2010). Whether resting-state functional con-
nectivity has potential to be diagnostic indicators is unknown.

Small number of subjects and much too higher-dimensional data in fMRI make it a 
challenge to design an accurate, robust classifier to discriminate and research schizo-
phrenia. To address this critical issue, different types of feature extraction, selection 
methods have been proposed to reduce the dimensionality of feature space. However, 
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traditional feature selection or extraction methods mainly rely too much on mathemati-
cal method and ignore physiological signification; those features that are discarded 
mathematically may have vital positions in emergence and development of disease. Mak-
ing an accurate prediction with high-dimensional data seems a difficult job (Liu et  al. 
2012). In recent years, deep-learning turns out to be a good solution to this problem 
(Hinton and Salakhutdinov 2006). By applying autoencoder method, high-dimensional 
data were mapped in low dimension, this method presented good practicability (Hazlett 
et al. 2017). The model used in our research was first raised by Hinton and Salakhutdinov 
(2006); its core idea is that high-dimensional data can be converted to low-dimensional 
codes by training a multilayer neural networks with a small central layer to reconstruct 
high-dimensional input vectors. Comparing with most used PCA, this model shows a 
distinct advantage.

In current study, resting state was calculated and used as classification features and 
sent to Three-stage deep-learning network. Then feedforward back propagation neu-
ral networks were used as classifier to classify patients from controls. We expected to 
find that resting-state functional connectivity presented good potential classification 
capacity.

Materials and methods
Participants

A total of 39 EOS patients were recruited from the Second Affiliated Hospital of Xinxi-
ang Medical University. All patients were independently diagnosed by research psy-
chiatrists and satisfied the following criteria: (1) DSM-IV-TR criteria for schizophrenia 
(Diagnostic and Statistical  Manual of Mental Disorders, fourth edition, text revision, 
American Psychiatric Association, 2000); (2) no co-morbid Axis I diagnosis; (3) duration 
of illness is less than 2 years; (4) anti-psychotic-naive. Patients were interviewed again 
after 6 months for a final schizophrenia diagnosis. The symptoms were evaluated using 
the Positive and Negative Syndrome Scale (PANSS). A total of 31 age-, gender-, educa-
tion-, and IQ-matched healthy adolescents were included in this study. All HCs did not 
have any past or current neurological disorders, family history of hereditary neurologi-
cal disorders, and history of head injury resulting in loss of consciousness and substance 
abuse.

This study was approved by the Ethics Committee of the Second Affiliated Hospital 
of Xinxiang Medical University, and informed written consents were obtained from all 
subjects.

Data acquisition

All subjects were instructed to rest with their eyes closed, not to think of anything in 
particular, and not to fall asleep during the resting-state fMRI (rs-fMRI)scanning(Marx 
et  al. 2004; Pang et  al. 2015; Wei et  al. 2014). fMRI data were collected using the 3T 
MRI scanner (Siemens-Trio, Erlangen, Germany) of the Second Affiliated Hospital 
of Xinxiang Medical University. Scanning and clinical assessments were performed 
in 1  day. Functional images were collected transversely using an echo-planar imag-
ing (EPI) sequence with the following settings: TR/TE = 2000/30 ms, flip angle = 90°, 
FOV = 220 × 220 mm2, slices = 33, matrix = 64 × 64, inter slice gap = 0.6 mm, and 
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voxel size = 3.44 × 3.44 × 4 mm3. The scan lasted for 480 s for each subject, and 240 
volumes were acquired.

Image preprocessing

Data preprocessing was conducted using the Statistical Parametric Mapping Software 
(SPM8, http://www.fil.ion.ucl.ac.uk/spm8). The first 10 volumes of each participant were 
discarded because of the instability of the initial MRI signal and adaptation of the par-
ticipants to the circumstance, leaving 230 volumes. The remaining rs-fMRI images were 
corrected for slice acquisition and head motion using a least squares approach with a 
6-parameter spatial transformation. Four patients and one healthy control with head 
motion scans exceeding 2 mm or 1° rotation were excluded. Subsequently, the corrected 
images were normalized according to the standard SPM8 Montreal Neurological Insti-
tute (MNI) template (Power et al. 2012) and re-sampled to 3 × 3 × 3 mm3 voxel size. The 
resulting images were linearly detrended and filtered using a typical temporal band-pass, 
including slow-5 band-pass (0.01–0.027  Hz) and slow-4 band-pass (0.027–0.073  Hz) 
separately (Yu et  al. 2014; Gohel et  al. 2014). Friston 24 motion parameters, cerebro-
spinal fluid, and white matter signals were included in the multiple regression model to 
reduce the effects of head motion and non-neuronal BOLD fluctuations (Friston et al. 
1994; Tomasi and Volkow 2012). Given that resting-state FCD is sensitive to minor head 
movements, we calculated the mean frame-wise displacement (FD) to further determine 
the comparability of head movement across groups. The largest mean FD of each sub-
jects was less than 0.3 mm and two-sample t test showed that there was no significant 
difference in the mean FD between the two groups (HC: 0.09 ± 0.05; EOS 0.10 ± 0.03; 
mean ± SD, p = 0.33). Then, the “bad” time points as well as their 1-back and 2-forward 
time points were removed from the time series by employing a “scrubbing” method 
with a FD (Power et al. 2012; Long et al. 2016) threshold of 0.5 mm. Participants retain-
ing more than 80% of the original signals after scrubbing were included in the analysis. 
The number of time points that remained was non-significantly different between HC 
(227.8 ± 6.98) and EOS patients (225.1 ± 6.72) (p = 0.09).

Extraction of regional time series and construction of functional connectivity network

Images were smoothed using an 8 × 8 × 8 mm3 FWHM Gaussian kernel. The averaged 
signals of 90 brain regions of the AAL (excluding brain areas in the cerebellum) template 
were calculated. We then computed the Pearson’s correlation between each pair of sig-
nals. Thus, a 90 × 90 connectivity matrix for each subject was obtained.

Deep‑learning analysis

Functional connectivity was treated as classification features and sent to autoencoder. As 
done in previous studies (Hinton and Salakhutdinov 2006; Hazlett et al. 2017), the model 
was evaluated via a standard tenfold cross-validation. The core of model was a weighted 
three-stage neural/deep-learning network, where the first stage reduces 4005 measure-
ments to 400, the second stage reduces 400 to 20, and the third stage reduces 20 to only 
2 measurements. At each stage, the measurements (in the progressively smaller sets) are 
the weighted combination of input measurements from the previous stage (Fig. 1).

http://www.fil.ion.ucl.ac.uk/spm8
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Results
Demographic information

Sample characteristics are shown in Table 1. No significant difference was found between 
schizophrenias and controls in sociodemographic characteristics like age, gender, and so on.

Performance of deep‑learning

The accuracy of deep-learning method reached 79.3%, the sensitivity reached 87.4%, and 
the specificity reached 82.2%. Then, to evaluate the significance of the accuracy, per-
muted test was the used. By permuting 10,000 times, the p value was smaller than 0.05, 
this result showed us that the accuracy of deep-learning was significant (Table 2).

Fig. 1  Schematic of our method. All resting-state scans were preprocessed and used construct functional 
connectivity matrix (90 × 90 in this study). Then all these functional connectivity matrices were divided into 
train data and test data in each cross-validation (leave-one-out method used here), train data were used to 
build model and test data were used to evaluate performance of the model

Table 1  Demographic and clinical characteristics in the study

a   p value was obtained by two-sample t test
b   p value was obtained by χ2 two-tailed test

Demographics, mean (SD) EOS
n = 37

Control
n = 30

p value

Age (year) 15.5 (1.8) 15.3 (1.6) 0.57a

Gender (male/female) 20/17 13/17 0.53b

Education (years) 8.5 (1.48) 8.7 (1.42) 0.605a

Duration of psychosis (months) 16.0 (14.4) – –

Handedness (right/left) 37/0 30/0 –

PANSS positive symptoms 20.42 (5.72) – –

PANSS negative symptoms 20.91 (8.41) – –

PANSS general symptoms 33.28 (6.69) – –

PANSS total symptoms 74.62 (10.61) – –

Table 2  Performance of deep-learning method

Classification Sensitivity Specificity p value (permuted)

79.3% 87.4% 82.2% < 0.05
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Discussion
In current study, we used deep-learning method to verify the potential of functional 
connectivity in resting state used as biomarker of clinical diagnosis. Resting-state con-
nectivity presented good potential classification capacity (79.3% for classification accu-
racy, 87.4% for sensitivity, 82.2% for specificity, p < 0.05 for permuted test).

Many other studies used resting-state functional connectivity to differentiate schiz-
ophrenia patients from controls (Mikolas et  al. 2016; Cabral et  al. 2016; Arbabshirani 
et  al. 2013; Shen et  al. 2010; Du et  al. 2012; Skåtun et  al. 2016). Two strategies were 
used in these studies to overcome over-fitting problem. First, feature selection/extrac-
tion method was used to reduce the dimensionality of feature space, then selected fea-
tures were used to classify patients with schizophrenia from controls. Second, focusing 
on feature subsets and test their ability of classification. The first strategy rely too much 
on mathematical method and ignore physiological signification; those features that are 
discarded mathematically may have vital positions in emergence and development of 
disease (Liu et al. 2012). As for the second strategy, focusing on partial feature subsets 
would lead to a biased conclusion (Dietterich 1997). Deep-learning used in our study has 
been proved to be a good solution to these problems (Hinton and Salakhutdinov 2006). 
Here, we just proved that deep-learning method could be a feasible tool to recognize 
schizophrenia patients from controls.

Early diagnosis can significantly improve treatment response and reduce associated 
costs (McGlashan 1998). The absence of stable and reliable biomarkers makes current 
diagnosis of schizophrenia, which mainly relies on clinical manifestations by experi-
enced clinician for now, a challenging task. Previous studies had found that resting-state 
functional connectivity was altered in schizophrenia patients (Woodward et  al. 2011; 
Whitfield-Gabrieli et al. 2009; Rotarska-Jagiela et al. 2010). Our study found that resting-
state functional connectivity presented good potential classification capacity and could 
be used as a biomarker of clinical diagnosis.
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