
Disrupted architecture of large‑scale 
brain functional connectivity networks 
in patients with generalized tonic–clonic seizure
Rong Li1, Yangyang Yu1, Wei Liao1, Zhiqiang Zhang2, Guangming Lu2 and Huafu Chen1*

Introduction
Idiopathic generalized epilepsy (IGE) is an epileptic syndrome associated with wide-
spread cortical network abnormalities (Blumenfeld et  al. 2003). Generalized tonic–
clonic seizure (GTCS) is the most common phenotype of IGE, and patients with GTCS 
suffer long-term neuropsychological and cognitive impairments, such as deficits in 
attention and self-related processing, as well as executive dysfunction (Vlooswijk et al. 
2010), which have been demonstrated to be associated with alterations of certain intrin-
sic functional connectivity networks (Wei et al. 2015). It is increasingly recognized that 
the human brain is organized into large-scale functional networks (Bressler and Menon 
2010; Li et  al. 2017). Individual intrinsic functional networks (ICNs) have been impli-
cated in specific neurocognitive functions such as vision, attention, executive function, 
and self-related processes (Fox et al. 2006; Greicius et al. 2003). Aberrant connectivity 
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within and between ICNs has been reported in a number of neurologic and psychiatric 
conditions (Li et al. 2017; Liao et al. 2010).

Theoretical models of network pathology in GTCS have focused on default mode 
network (DMN) and its interrelationships with task-positive networks, such as dorsal 
attention network (DAN) and frontal parietal network (FPN). Intrinsic activity in the 
DMN provides a baseline state of the human brain associated with spontaneous activi-
ties like mind wandering and consciousness maintenance. The suspension of the DMN 
was assumed to contribute to reduced consciousness during interictal epileptiform dis-
charges in patients with IGE (Gotman et al. 2005). Our previous study has demonstrated 
lower level of rich club connectivity among DMN regions of the medial prefrontal cortex 
and the precuneus/posterior cingulate cortex in GTCS (Li et al. 2016). Task-positive net-
works, including the DAN and the FPN, have been postulated to subserve active cogni-
tive processing (e.g., executive control, attention, and working memory) (Fox et al. 2005). 
Abnormal functional connectivity within these functional systems has been reported in 
GTCS (McGill et  al. 2012; Tian et al. 2010). Recently, a fMRI study has demonstrated 
altered functional connectivity among default, attention, and control networks in IGE 
patients using independent component analysis (ICA) (Wei et  al. 2015). However, the 
ICNs identified using ICA approach so far do not provide a complete description of 
brain functional architecture as they do not cover the whole cortex (Wei et  al. 2015). 
Other studies have often examined the connectivity of these networks at different indi-
vidual seed regions making comparisons difficult, and have produced somewhat incon-
sistent results (Song et al. 2011; Kim et al. 2014; Moeller et al. 2011). Studies in GTCS 
that have comprehensively examined connectivity abnormalities across the complete 
range of large-scale brain networks remain relatively rare.

In the current study, we aimed to investigate the potential aberrant intra- and inter-
connections among large-scale brain functional networks in GTCS. We comprehen-
sively examined functional connectivity disturbances by placing 907 regions of interest 
(ROIs) at regular intervals throughout the entire brain cortex. A network contingency 
analysis was employed to identify abnormalities across all seven ICNs and their inter-
connections in GTCS. Given the growing evidence for altered network organization in 
GTCS, we hypothesized that patients with GTCS would exhibit altered functional con-
nectivity both within and between specific ICNs such as DMN, attention network, and 
control network, underlying the cognition dysfunction in patients with GTCS.

Materials and methods
Subjects

The datasets in the current study were recruited from Jinling Hospital, Nanjing Univer-
sity School of Medicine, which consist of 55 patients with GTCS (mean age 26.00 ± 7.94) 
and 63 age-matched healthy controls (HC) (mean age 25.38 ± 6.35). Part of these clini-
cal data have been reported in our previous studies (Li et al. 2016; Zhang et al. 2011). 
Experiments were approved by the Ethics Committee of Jinling Hospital, Nanjing Uni-
versity School of Medicine. All subjects provided written informed consent prior to par-
ticipation. Based on the International League against Epilepsy criteria (Commission on 
Classification and Terminology of the International League Against Epilepsy 1989), all 
patients match the following criteria: (1) clinical features of GTCS were detected, such 
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as twitching limbs, out of consciousness, and generalized seizures; (2) generalized poly-
spike waves were observed in their scalp EEG; (3) no psychiatric or neurological etiology 
history; (4) no focal lesions in anatomical MRI, and 5) right handedness. In addition, 
HC had no current or lifetime neurologic disorders or psychiatric illnesses and no gross 
abnormalities on brain MRI.

Data acquisition

Imaging was acquired on a 3T MR scanner (TIM Trio; Siemens Medical Solutions, 
Erlangen, Germany) with a standard birdcage head transmit and receive coil at Jin-
ling Hospital, Nanjing, China. Data of patients were acquired during the interictal 
periods. Foam padding was used to minimize head motion for all participants. Func-
tional images were acquired using a single-shot, gradient-recalled echo-planar imag-
ing sequence (TR =  2000 ms, TE =  30 ms, and FA =  90°). Thirty transverse sections 
(FOV = 240 × 240 mm2, in-plane matrix = 64 × 64, slice thickness = 4 mm, interslice 
gap = 0.4 mm, voxel size = 3.75 × 3.75 × 4 mm3), aligned along the anterior commis-
sure–posterior commissure line, were acquired. For each subject, a total of 250 volumes 
were acquired, resulting in a total scan time of 500  s. The subjects were told to relax, 
hold still, keep their eyes closed without falling asleep, and think of nothing in particular.

Preprocessing

Functional images were preprocessed using Data Processing Assistant for Resting-State 
fMRI software (DPARSF, Advanced Edition, V4.0) (http://www.restfmri.net/forum/). 
For each subject, the initial 10 functional images were discarded to ensure steady-state 
longitudinal magnetization. Subsequently, we performed slice timing and realignment 
for the remaining 240 images to correct for the acquisition delay between slices and the 
head motion. Then, the corrected images were normalized to the standard SPM8 echo-
planar imaging template, resampling to 3 × 3 × 3 mm3. Nuisance signals (i.e., 24 head 
motion parameters, averaged signals from CSF, white matter) were regressed out using 
multiple linear regression analysis. Finally, the resulting images were detrended to move 
linear trends and temporal filtered with a bandpass filter (0.01–0.08 Hz). We required 
that the transient movement during scanning was no more than 3 mm of translation and 
3° of rotation. Since some recent studies have shown that functional connectivity analy-
sis is sensitive to gross head motion effects (Power et al. 2012; Van Dijk et al. 2012), the 
mean framewise displacement (FD) was also calculated to further determine the compa-
rability of head movement across groups. The FD threshold for excessive motion was set 
at 0.3 mm.

Functional network construction

We placed regions of interest (ROIs) with nineteen voxels at 12-mm intervals across the 
whole brain to generate the whole brain functional connectome for each subject. Given 
that the aim of this study is to investigate the intra- and inter-connections among large-
scale networks in GTCS and HC, we employed the ICN parcellation template from Yeo 
et al. (2011), which parcellated the cortical brain into seven cortical networks (including 
visual network (VN), somatomotor network (SMN), dorsal attention network (DAN), 
ventral attention network (VAN), limbic network (LN), frontoparietal network (FPN), 
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and default modal network (DMN)). Since our main interest was cortical ICNs, we 
removed all ROIs that fell more than 5 mm from the ICN parcellation of the brain (Yeo 
et al. 2011), yielding 907 ROIs in total. Using the preprocessed resting-state fMRI time 
series, we extracted spatially averaged time series from each of the ROIs. Then, Pear-
son’s correlation coefficients were calculated pairwise between time courses for each of 
the 907 ROIs, producing a temporal correlation matrix (N × N, where N = 907 is the 
number of regions of interest) for each subject. Those correlation matrices were then 
normalized by Fisher’s r–z transformation to improve the normality.

Network contingency analysis

To address the question of whether and where the GTCS group showed significantly 
different intra- and inter-connections among large-scale functional networks, we con-
ducted the network contingency analysis. This analysis takes a population-based 
approach to the question of when two networks exhibit disrupted connectivity. Network 
contingency analysis is composed of the following three steps.

Firstly, the multiple regression analysis was employed for each edge to model the effect 
of disease (GTCS versus HC), while controlling the effect of nuisance variables including 
age, gender, and head movement characterized by the framewise displacement (Power 
et al. 2012). The modal would generate a statistical T value for each edge, indicating to 
what extent the GTCS group is different from the HC. We then thresholded delta con-
nectome based on statistical significance at p < 0.005. Those edges surviving the thresh-
old would be used for further analysis.

Secondly, we reorganized those suprathreshold edges based on network affiliation. 
Briefly, we used the network map of Yeo et al. (2011), which parcellated the brain into 
seven major networks. Those networks were employed to generate the cross-tabulation 
map with 28 nonredundant cells. Each cell represents the number of edges linking pairs 
of networks.

Thirdly, to test the hypothesis of whether the GTCS group showed significant differ-
ence in functional connectivity within/between networks compared with the HC group, 
the nonparametric permutation approach (5000 permutations) was employed. For each 
permutation, each participant was randomly assigned to one of the two groups with the 
same size as the original group of GTCS and HC. Multiple regression analysis was per-
formed and the statistical T value for each edge was obtained. The number of suprath-
reshold edges was then calculated for each pair of networks. The whole procedure would 
result in a null distribution of the number of suprathreshold edges for each cell. A p 
value was assigned to each cell by computing the proportion of the number of suprath-
reshold edges exceeding the null distribution values. We performed the contingency 
analysis for each cell and corrected for multiple comparisons using Bonferroni correc-
tion with p < 0.05.

We were also interested in the directionality of changes. Cells change in positive direc-
tion if the number of positive suprathreshold edges is larger than the number of negative 
suprathreshold edges, and vice versa. We generated 3-dimensional visualization of cells 
showing significant changes in functional connectivity between the GTCS group and the 
HC group, by employing BrainNet Viewer (Xia et al. 2013).
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Furthermore, Shepherd’s pi correlation analysis was performed to explore the poten-
tial relationship between abnormal functional connectivity and disease characteristics 
(disease duration and seizure frequency). The statistical significance level for the correla-
tion analysis was set at p < 0.05 (uncorrected).

Results
Altered intra‑ and inter‑connections among functional connectivity networks

Network contingency analysis revealed statistically significant effects in four cells 
(where each cell represents the set of connections between two ICNs). Compared 
with HC, GTCS showed significantly altered functional connectivity within FPN 
(p = 0.0004,) and altered connectivity between DMN and FPN (p = 0.0010), between 
DMN and DAN (p = 0.0006), and between SMN and LN (p = 0.0004), where all p val-
ues were Bonferroni corrected (Fig.  1). Three pairs of networks are shaded in warm 
color, suggesting that there was a preponderance of connections showing a significant 
increase in GTCS compared to HC. Within FPN there was a preponderance of con-
nections showing significantly decreased connectivity, which are shaded in cool color. 
Those full network interrelationships were visualized on sagittal and axial views in 
Fig. 2.

Clinical correlation analysis

Shepherd’s pi correlation analysis showed that the disrupted functional connectiv-
ity strength within FPN was negatively correlated with the disease duration in GTCS 
patients (Fig. 3; r = − 0.35, p = 0.0230). There was no significant correlation between 
connectivity of other pairs of networks and disease characteristics.

Fig. 1  Network cross-tabulation map. Network contingency analysis revealed that GTCS showed significantly 
abnormal functional connectivity within FPN–FPN, as well as between DMN and FPN, DMN and DAN, and 
SMN and LN, where all p values were Bonferroni corrected. DMN, default mode network; DAN, dorsal atten-
tion network; FPN, frontoparietal network; SMN, somatomotor network; LN, limbic network
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Discussion
The present study investigated intra- and inter-connections among large-scale brain 

Fig. 2  Three-dimensional visualization of cells showing significant changes in functional connectivity 
between the GTCS group and the HC group. Each of these four sets of abnormal intra- and inter-connections 
is rendered separately on sagittal and axial views of a canonical brain. DMN, default mode network; DAN, 
dorsal attention network; FPN, frontoparietal network; SMN, somatomotor network; LN, limbic network

Fig. 3  Correlation between the functional connectivity strength within FPN and the disease duration in 
GTCS patients. The decreased functional connectivity strength within FPN was significantly negatively 
correlated with longer disease duration (Shepherd’s pi correlation: r = 0.35, p = 0.0230). FPN, frontoparietal 
network
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intrinsic functional networks in patients with GTCS applying network contingency 
analysis. Consistent with previous studies (Wei et al. 2015; Zhang et al. 2011), we dem-
onstrated that GTCS exhibits altered connectivity between default network, which is 
involved in self-related processes, and FPN and DAN, which is involved in cognitive 
control and attention-demanding cognition functions, respectively. We also found that 
FPN exhibited distributed alterations within intra-connections, and this decreased con-
nectivity pattern was negatively correlated with longer epilepsy duration. These findings 
add to the growing evidence that GTCS is likely to be associated with functional net-
work connectivity abnormalities.

An important finding of the current study is the significant increased inter-connec-
tions between default network and task-positive networks, including the DAN and the 
FPN. In the prior studies (Fox et al. 2005), the relationship between the default network 
and task-positive network was referred to as “anticorrelated,” suggesting a discriminate 
role that segregates neuronal processes contributing to opposite goals or competing rep-
resentations. The default network is involved in introspective orientation of attention 
during activities such as autobiographical memory, prospective thought, and self-related 
processing. Task-positive networks, in contrast, are commonly activated with a variety 
of cognitive control processes, particularly those involving conflict monitoring, informa-
tion integration, and response selection. DAN and FPN are key task-positive networks 
that perceive externally directed stimuli and regulate switching between default network 
and task-positive modes of cognition. Previous studies have demonstrated that IGE–
GTCS is likely to be associated with a disrupted brain organization probably derived 
from abnormal functional interactions among default, attention, and control networks 
(Wei et al. 2015; McGill et al. 2012; Wang et al. 2011). Consistent with previous findings, 
the current study confirmed that the normative pattern of anticorrelation was disrupted 
with increased positive connectivity between the DMN and the DAN and the FPN in 
patients with GTCS. This altered connectivity pattern could be an indication as dysfunc-
tion in the shifting balance between these intrinsic functional networks due to epileptic 
activity, perhaps associated with deficits in cognitive control and attention.

Consistent with previous network studies on epilepsy (Wei et  al. 2015), our results 
also showed significantly decreased functional connectivity within FPN in GTCS. Fur-
thermore, this decreased connectivity pattern was negatively correlated with longer 
epilepsy duration (r = 0.35, p = 0.0230). The regions within FPN are activated during 
tasks demanding cognitive control and executive function (Spreng et al. 2013). Patients 
with GTCS have been associated with impairments in executive function (Hommet et al. 
2006). Accordingly, the disrupted functional interactions among regions within FPN 
may reflect the aberrant functional network segregation in GTCS, as a result of deficits 
in goal-directed cognitive processes.

Conclusions
In sum, by applying large-scale network analysis approach, we have demonstrated the 
abnormal inter-connections between default network and task-positive networks and 
the disrupted intrarelationships within the FPN control network. The disrupted func-
tional architecture of the DMN and the task-positive network may be related to self-
related processes and deficits in cognitive function and attention  in patients. Our 
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findings support the notion that GTCS is associated with disrupted architecture in 
large-scale brain networks, providing information for better understanding of the patho-
physiological mechanisms of GTCS.
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