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Introduction
Route prediction is a key requirement in many location-based important applications 
such as vehicular ad hoc networks, traffic congestion estimation, resource prediction 
in grid computing, vehicular turn prediction, travel pattern similarity, and pattern min-
ing. Route prediction is a problem which deals with, given a sequence of road network 
graph edges already traveled by the user, predicting the most probable edge of the net-
work to be traveled. Our approach is to build a prediction by partial match (PPM) model 
from a huge corpus of sequential trajectories traveled by the user in the past. PPM is 
widely used in various applications in the area of data compression and machine learn-
ing (Begleiter et  al. 2004). Time-stamped GPS traces are collected over a long period 
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of time. The chronological huge sequence of GPS traces is broken down into smaller 
units called trip (Froehlich and Krumm 2008; Tiwari et al. 2013). Trips are mapped to 
road network graph using map matching process which identifies the object’s location 
on the road network graph (Tiwari et  al. 2014; Bernstein and Kornhauser 1996; Zhou 
and Golledge 2006). PPM tree-based model is constructed from trips composed of 
an ordered sequence of road network edges. Given a trajectory traveled by the user, a 
lookup is done in the PPM tree-based model and the most likely edge is found.

Cleary and Witten invented PPM back in (1984). Many versions of PPM evolved there-
after (Moffat 1990; Cleary et al. 1995; Teahan 1995; SchüRmann and Grassberger 1996). 
PPM models learn from historical occurrences of sequences to predict the probability 
of a specific data appearing after a given data sequence. For experiments in this work, 
a version PPM-C is used. We explain the process of construction of PPM-C, followed 
by distributed construction of the same. Real applications using PPM deals with pro-
cessing of huge data sets, and processing such volume sequentially and coming up with 
a PPM model is a bottleneck. Attempts have been made to achieve scalability by add-
ing processors and memory (Gilchrist 2004; Joel and Sirota 2012; Effros 2000). However, 
distributed construction of PPM is still a challenge. In the proposed work, scalability 
is achieved by decomposing GPS traces into trips and processing them in parallel and 
finally consolidating them to form the PPM model. A set of user trips is decomposed 
into smaller sets and ported to compute a module known as mappers. Mappers com-
pute the variable order contexts as key–value pairs. In each case, the key is the context 
and value is the occurrence frequency in the training set. Key–value pairs from various 
mappers are emitted to the reducer node. Reducer consolidates the occurrences of vari-
ous contexts and inserts in the PPM trie. The final tree produced by the reducer is the 
PPM model which is used for route prediction. The major contribution of this work is 
a technique of distributed computation of PPM and its application in route prediction. 
All experiments and implementations are done on real data sets available openly in the 
public domain.

PPM tree‑related work and literature
Prediction by partial match (PPM) is a context modeling-based adaptive statistical data 
compression technique. It has evolved as a better alternative for solving many problems 
in the field of biomedical engineering, natural language processing and artificial intelli-
gence. PPM models use a set of historical occurrences of sequences to predict the prob-
ability of a specific symbol appearing at a given position in an input stream (Begleiter 
et al. 2004). Arithmetic encoding was proposed in 1976, after which soon PPM variants 
PPM-A and PPM-B were invented by Cleary and Witten (1984). These were further 
improved by Moffat (1990), resulting in PPM-C and PPM-D. PPM-D was proved show 
a bit more improvement in some cases. All these variants of PPM are more or less same, 
but only differ in the way probability is computed. In all the cases, the PPM model is a 
mix of lower-order models. If unsuitable results are found with the higher-order model, 
then it falls back to lower-order models (context of lesser length). Hiroyuki et al. (2005) 
presented an unbounded version of PPM known as PPM*, used for the classification of 
text. However, it proposed the use of finite deterministic contexts. Cleary et al. (1995) 
also proposed an unbounded variant of PPM, but scalability and parallelism were not 
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addressed. It was well established that it performs well in compression, language iden-
tification, text prediction, word segmentation, text categorization, etc. Gilchrist et  al. 
(2004) proposed parallel computation with more focus on BZIP2 in a multi-processor 
system. Effros et  al. (2004) presented an improvement on PPM, but parallelism was 
not addressed. Begleiter et al. (2004) further explored PPM and successfully applied it 
to artificial intelligence (AI) applications including text prediction and music recogni-
tion and it worked well. Celikel et al. (2005) applied PPM for language recognition and 
proved promising results. The objectives of almost all researches on PPM were either 
improving its accuracy and execution on a single machine or its application in differ-
ent fields of study. In spite of their huge applicability, parallel execution and PPM model 
construction were hardly explored. The objective of this research is to come up with a 
technique for distributed parallel construction of the PPM model tree. The major mile-
stones in PPM are as listed in Table 1.

PPM tree basics

Time-stamped GPS traces are collected over a long period of time. GPS traces are in 
the form 

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

 , which represents the object’s location 
(

xtk , xtk
)

 at time tk . Chronological huge sequences of GPS traces are broken down into 
smaller units called trips (Froehlich and Krumm 2008; Tiwari et al. 2013). A user trip 
T = (ps,ts,pe,te) is an ordered sequence of GPS location data points (pi, ti)∀1 ≤ i ≤ n 
where ps, pe are the start and end positions and ts, te are the start and end time of trips, 
respectively.

Two trips T1 and T2 are said to be consecutive if the end of the first trip is in the same 
position as the end of the second trip and there is a time gap between the two. A user 
trip plotted on OpenStreetMap (OSM) base images is as shown in Fig. 1.

T =

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtm , ytm, tm
)

,

ps = (xt0 , yt0,), ts = t0, pe = (xtm , ytm,), ts = tm.

Table 1  Important PPM construction algorithms

Complexity Parallel Probabilistic

Bernstein and Kornhauser (1996) O(n2) No Yes

PPM-A (Cleary and Witten 1984) O(n2) No Yes

PPM-B (Cleary and Witten 1984) O(n2) No Yes

PPM-C (Moffat 1990) O(n2) No Yes

PPM-D (Moffat 1990) O(n2) No Yes

Cleary and Witten (1995) O(n2) No Yes

Teahan (1995) O(n2) No Yes

Joel and Sirota (2012) O(n2) No Yes

Effros (2000) O(n2) No Yes

PPM* (Hiroyuki et al. 2005) O(n2) No Yes

Celikel (2005) O(n2) No Yes

Proposed PPM O(n2) Yes Yes
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Trips are mapped to road network graph using map matching process which iden-
tifies the object’s location on the road network graph (Quddus 2006; Quddus et  al. 
2006; Greenfeld 2002). An example of a road network extracted from OSM is shown 
in Fig. 2. Map matching is function f, for which the input is the GPS location and the 
road network graph, and the output is the edge of the road network.

where sequence S is an ordered sequence of road network edges. Figure  3 shows the 
GPS traces corrected and mapped to the road network. Let ∑ = {e1,e2,e3,e4,e5} be a 
finite set of all the edges of digitized road network and ∑* represent all finite length 
trips possible. Any trip a user makes essentially belongs to ∑ *. Let X = e0,e1,…,en−1 with 
xi ∈

∑

andX ∈
∑∗ be a trip, then the length of the trip is given by |X| = |e0,e1,….,en−1|.

The ordered arrangement of all sequences sσ , where σ is the symbol and s 
is the context of σ , is compact and TRIE is known as the PPM tree. For dem-
onstration purpose, let us assume alphabet set ∑ = {e1,e2,e3,e4,e5} and a string 
X = e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1 . All the contexts with length d = 2 are as shown 
in Table 2 and the resulting PPM tree is as shown in Fig. 4. 

f
((

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

)

→ S,

Fig. 1  User GPS traces representing a trip made by user

Fig. 2  Road network plotted over the OSM map
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Prediction by partial match (ppm) tree construction
Two‑phase PPM tree construction

We propose a two-step process to compute the PPM trie from user trips. The first 
phase computes all sequences sσ , where σ is the symbol and s is the context of σ , 
and the second phase constructs the trie from sequences computed in first phase. The 
algorithm scans one alphabet at a time and adds to the dictionary, new phrases which 

Fig. 3  User trip mapped to the road network

Table 2  All contexts computed for PPM construction

S. no. D Context (s) Symbol (σ) sσ

1 2 e1, e2 e5 e1, e2, e5

2 2 e2, e5 e1 e2, e5, e1

3 2 e5, e1 e3 e5, e1, e3

4 2 e1, e3 e1 e1, e3, e1

5 2 e3, e1 e4 e3, e1, e4

6 2 e1, e4 e1 e1, e4, e1

7 2 e4, e1 e2 e4, e1, e2

Fig. 4  PPM tree construction



Page 6 of 16Tiwari et al. Appl Inform  (2018) 5:4 

are shortest and not yet discovered. The subsequence generation process is repre-
sented in Algorithm 1. 

Algorithm I: Context and frequency calculation
Input: String and context length = constant

Output: Data map ′ of all contexts including target symbol σ with frequency ′ ( , )

Algorithm: 
1. Instantiate an empty map ′

2. Scan over from left to right and for each substring  ′ of length | ′ | = + 1: 
I. if ′ ∉ ′ then insert ′ as key and 1 as value into map ′

II. if ′ ∊ ′ then increment value by 1 for key ′ ( ′ )

The following sequence is used for demonstration: X = e1,e2,e5,e1,e3,e1,e4,e1,e2,e5,e1. All 
context s of length d = 2 along with target symbol σ denoted by sσ computed by Algo-
rithm 1, is as shown in Table 3. The length of string X is denoted by n. All contexts of 
length d in X can be calculated in linear time Θ(n) by scanning X from left to right and 
maintaining a window of size d. The Window is advanced by one unit on scanning one 
symbol. The maximum number of context strings each of length d that can appear in 
map is Θ(n − d) ≈ Θ(n), where d ≪ n. This can happen only if contexts do not overlap; 
otherwise in practice, the number of contexts is ≤ Θ(n).

The second phase starts with a tree from scratch and keeps on inserting context sequences 
sσ , obtained as input from the first step. For a new context which is not seen earlier, a com-
pletely new branch is created. Otherwise a path in tree is searched which is matching/over-
lapping with current context. All the nodes in overlapping path is increased by frequency of 
occurrance and remaining nodes are inserted at the end of overlapping path. The process is 
explained in Algorithm 2. The resultant PPM tree is constructed by Algorithm 2 from the 
map of context strings in Table 3 including the frequency count.

Algorithm II: PPM Tree Construction 
Input: Map ′  of all contexts including target symbol σ with frequency ( , ) 
Output: PPM Tree with frequency 
Algorithm:  

1. Instantiate an empty tree  
2. for each < , > pair < , >∊ ′ ( , ) 

I. Traverse tree  till any branch has overlap with  and increment each node by  
II. For remaining alphabets of  fork a branch starting last node till where overlap was found 

in step I. 
III. For each node in new branch set count equal to  

3. Return resultant tree  

Table 3  All contexts computed by Algorithm 1

S. no. d Context (s) Symbol (σ) sσ Frequency (f)

1 2 e1, e2 e5 e1, e2, e5 2

2 2 e2, e5 e1 e2, e5, e1 2

3 2 e5, e1 e3 e5, e1, e3 1

4 2 e1, e3 e1 e1, e3, e1 1

5 2 e3, e1 e4 e3, e1, e4 1

6 2 e1, e4 e1 e1, e4, e1 1

7 2 e4, e1 e2 e4, e1, e2 1
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Distributed construction of the PPM tree

To achieve a distributed construction of the CTW tree-based model, the two-step pro-
cess described in the earlier section is extended to be executed over the Hadoop clus-
ter leveraging the MapReduce computation framework. The first phase is executed by 
the mapper module. GPS traces are decomposed into smaller units called trips and map 
matched to road network. Trips as ordered sequence of road network edges are grouped 
into smaller sets and processed by mapper module. All the contexts, sσ , are generated by 
the mapper for each symbol σ in the trip and are put into a map which stores sequence 
as key and frequency as value. Implementation of the mapper module is as described in 
Algorithm 3. 

Algorithm III - Mapper function: Context and frequency calculation of local partition
Input: Split chunk ’ of original data string and context length = constant

Output: Data map ′ of all contexts including target symbol σ with frequency ′ ( , )

Algorithm: 
1. Instantiate an empty map ′

2. Scan over from left to right and for each substring  ′ of length | ′ | = + 1: 
I. if ′ ∉ ′ then insert ′ as key and 1 as value into map ′

II. if ′ ∊ ′ then increment value by 1 for key ′ ( ′ )
3. Send data map ′to reducer function

To demonstrate the distributed construction of the PPM tree, we take a string below. 
This will be used as a running example throughout further discussions.

e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1.

Table 4  All contexts with frequency computed by m1

S. no. d Context (s) Symbol (σ) sσ Frequency (f) 〈K,V〉

1 2 e1, e2 e5 e1, e2, e5 2 〈e1, e2, e5,2〉

2 2 e2, e5 e1 e2, e5, e1 2 〈e2, e5, e1,2〉

3 2 e5, e1 e3 e5, e1, e3 1 〈e5, e1, e3,1〉

4 2 e1, e3 e1 e1, e3, e1 1 〈e1, e3, e1,1〉

5 2 e3, e1 e4 e3, e1, e4 1 〈e3, e1, e4,1〉

6 2 e1, e4 e1 e1, e4, e1 1 〈e1, e4, e1,1〉

7 2 e4, e1 e2 e4, e1, e2 1 〈e4, e1, e2,1〉

Table 5  All contexts with frequency computed by m2

S. no. d Context (s) Symbol (σ) sσ Frequency (f) 〈K,V〉

1 2 e5,e1 e3 e5, e1, e3 2 〈e5, e1, e3, 2〉

2 2 e1, e3 e1 e1, e3, e1 2 〈e1, e3, e1, 2〉

3 2 e3, e1 e4 e3, e1, e4 1 〈e3, e1, e4, 1〉

4 2 e1, e4 e1 e1, e4, e1 1 〈e1, e4, e1., 1〉

5 2 e4, e1 e2 e4, e1, e2 1 〈e4, e1, e2, 1〉

6 2 e1, e2 e5 e1, e2, e5 1 〈e1, e2, e5, 1〉

7 2 e2, e5 e1 e2, e5, e1 1 〈e2, e5, e1, 1〉
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For the sake of simplicity and to demonstrate the concept, the input string is split into 
two chunks. For each of the split, a mapper is instantiated.

The output of both mappers m1 and m2 are summarized in Tables 4 and 5, respectively. 
In this example, context sσ serves as the key and frequency (f) as value.

The output of the mapper modules is a set of key–value pairs, where the key is the 
context and value as the frequency is emitted as input to the reducer. The framework 
does a consolidation by adding the frequencies for each context as key. For example, if 
from one mapper the value received is 〈e1, e2 | 4〉 and 〈e1, e2 | 10〉, then after merging 
the final entry becomes 〈e1, e2 | 14〉. It is ensured that each key–value pair is unique 
during this step. If multiple entries exist for the same key, then consolidation is done 
before sending it to the reducer. If data do not fit into memory, then it is periodically 
written to disk (Chang et al. 2008; Jeffrey and Sanjay 2004; Lammel 2008). The reducer 
starts with a tree from scratch and keeps on inserting context sequences iteratively. 
For a new context which is not seen earlier, a completely new branch is created. Oth-
erwise a path in tree is searched which is matching/overlapping with current context. 
All the nodes inoverlapping path is increased by frequency of occurrance and remain-
ing nodes are inserted at the end ofoverlapping path. The result of the consolidation 
of the output of mappers in Tables 4 and 5 is as shown in Table 6. Implementation of 
the reducer is as described in Algorithm 4. 

Algorithm IV - Reducer function: PPM Tree Construction
Input: Map ′ of all contexts including target symbol σ with frequency ( , )

Output: PPM Tree with frequency
Algorithm: 

1. Instantiate an empty tree 
2. for each < , > pair < , >∊ ′( , )

I. Traverse tree till any branch has overlap with and increment each node by 
II. For remaining alphabets of fork a branch starting last node till where overlap was found 

in step I.
III. For each node in new branch set count equal to

3. Return resultant tree 

Route prediction using the PPM tree

The objective is to predict the next edge σ ∊  E on the road network given the user 
traveled trajectory S =

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

 , based on information 
learned from historical user travel data. To predict next edge σ , S is map matched 

Split S1 = e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1 processed by mapperm1,

Split S2 = e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1 processed by mapperm2.

Table 6  Result of merging of intermediate key/value pairs by MapReduce framework

S. no. d Context (s) Symbol (σ) Key (k) Frequencies 〈K,〈sum(occurence)〉〉

1 2 e1, e2 e5 e1, e2, e5 2, 1 〈e1, e2, e5,〈3〉〉

2 2 e2, e5 e1 e2, e5, e1 2, 1 〈e2, e5, e1,〈3〉〉

3 2 e5, e1 e3 e5, e1, e3 1, 2 〈e5, e1, e3,〈3〉〉

4 2 e1, e3 e1 e1, e3, e1 1, 2 〈 e1, e3, e1,〈2〉〉

5 2 e3, e1 e4 e3, e1, e4 1, 1 〈e3, e1, e4,〈2〉〉

6 2 e1, e4 e1 e1, e4, e1 1, 1 〈e1, e4, e1,〈2〉〉

7 2 e4, e1 e2 e4, e1, e2 1, 1 〈e4, e1, e2,〈2〉〉
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to digitize to road network using the map matching process f as described in earlier 
sections.

Trajectory S is the converted form of an ordered sequence of road network edges 
and can be considered as a Markov chain, where the highest possibility of occurrence 
among all other possibilities is

p is the conditional probability of occurrence of σ given the event eiei+1 . . . ei+n has 
already occurred. PPM trie constructed has information learned from historical travel 
data of user. Since PPM is an unbounded Markov model, the corresponding tree may be 
balanced and each path from the root may be of different length. This makes PPM a vari-
able order Markov model. In the worst case, one has to traverse the longest branch of the 
PPM tree. If the length of the longest branch of tree is k, then the complexity of the pre-
diction using the PPM trie is O(k) . The probabilities of occurrence of each node starting 
with the root node is as shown in Fig. 5. Route prediction function denoted by a function 
Route_Predict can be represented as: 

The below cases demonstrate the prediction Route_Predict function over the PPM 
model constructed by Algorithm 4.

Case I:	� This is the case when the user is at root node which signifies the user has 
not started travel. We represent the user trajectory by S = ε . From the 
PPM trie, it can be seen that the various possibilities for traversals are 
{e1, e2, e3, e4, e5} . The probability for each case is as follows:

	�

f
(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

→ eiei+1 . . . ei+n.

p (σ |eiei+1 . . . ei+n).

Route_Predict(eiei+1 . . . ei+n) → σ .

p(e1|ε) =
8

18
, p(e2|ε) =

3

18
, p(e3|ε) =

2

18
,

p(e4|ε) =
2

18
, p(e5|ε) =

3

18
.

Fig. 5  PPM tree with probability distribution
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	     Hence, Route_Predict(ε) → e1.

Case II:	� Another case we explore is when edge e2 has been traversed so far, S = e2 . 
The length of the input trajectory is 1 unit only and consists of a single edge. 
The candidate edge after e2 already traversed is only one and is e5. In this 
case, the probability of occurrence of e5 after e2 as context is p(e5|e2) = 1 . 
Hence, Route_Predict (e2) → e5.

Case III:	� The next case is when the input trajectory is S = {e1} and only one edge e1 
has been traversed so far. However, there are multiple candidates ({e2,e3}) 
with high probability after edge e1 is already traversed. The probabilities of 
each candidate is as follows:

	�

	   �Hence, two edges are likely and will be resolved once more edges are 
traveled.

Case IV:	� Next, we consider a case when multiple edges are traveled and the input to 
Route_Predict function is {e1, e2} . The possible candidate for travel next is 
edge e5, having the said event of traveling over {e1, e2} already occurred. p 
(e5|e1,e2) = 1 and hence Route_Predict(e1,e2) → e5.

Case V:	� Next, we consider a case when the user has traveled a path which has 
not yet been seen by the PPM model. For example, if the user has trave-
led path {e3,e4} but in the trie no such path exists, this means something 
which has not occurred in the past. Hence, the prediction function result is 
Route_Predict(e3, e4) → ε . This can happen when the user has reached the 
destination and there is nothing to predict, and in another case it is a new 
route. In the latter case, new routes when found should be sent to the model 
for learning.

Case VI:	� All the above cases focused on predicting one hop next edge. The same 
model can be used to predict an end to the end path as well. The input tra-
jectory is ε . The next edge selected is e1. From e2, the next probable edge is 
e5 and so on

Implementation and evaluation
Map data: spatial road network data

OpenStreetMaps provides various kinds of geographical spatial and non-spatial data 
sets such as water bodies, international boundaries, state boundaries, and road net-
works. In this work, we use digitized road network data downloaded from OSM. OSM 
provides open source data under public open content license (https​://www.opens​treet​
map.org). Data can be downloaded in a variety of format images, XML files, shape 
files, etc. We used only road network data from OSM. Data can be downloaded using 
the OSM interface (https​://www.opens​treet​map.org) if the area is smaller. If the area is 
larger, for example, the official vendor portal can be used (https​://www.cloud​made.org). 
Data are available in various standard formats such as image (.jpg, .png, etc.) or XML 
which comes with extension.osm. We used.osm format which we parsed using open 
source tool called Osm2pgsql (wiki.openstreetmap.org/wiki/Osm2pgsql). It is used to 

p(e2|e1) =
3

8
, p(e3|e1) =

3

8

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.cloudmade.org
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convert OSM data into PostGIS compatible.sql files. The SQL data are then loaded to 
spatial database PostGIS. We used GeoServer tool for all data visualization. GeoServer 
supports easy connectivity to PostGIS database. A snapshot of the OSM Beijing road 
network is as shown in Fig. 6.

User location traces data

GPS data corpus used in this research work is from Geolife project. GPS data collec-
tion effort was made as Geolife project for the period 2007–2012 (Zheng et al. 2009; 
Zheng et  al. 2008; Zheng et  al. 2010). Geolife GPS data set contains time-stamped 
positional information of around 182 users. It contains around 17,621 trajectories 
which have 24,876,978 GPS data points. The length of all trajectories sums up to 1.2 
million km and a total duration of around 48+ thousand hours. Devices used to cap-
ture data are GPS loggers as well GPS phones with different recording frequencies. 
Of all the trajectories, 91% trajectories have data collection frequency of every 1–5 s 
or 5–10 m per point and are dense data (Lammel 2008). Data collections were done 
from users while performing a variety of activities ranging from routine tasks like 
the movement from home to office and back to home as well other non-routine tasks 

Fig. 6  OSM road network

Fig. 7  Geolife trajectory sample data
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such as sightseeing, cycling, and shopping etc. (Zheng et al. 2009; Zheng et al. 2008; 
Zheng et al. 2010). Figure 7 shows GPS traces plotted from Geolife GPS data corpus.

Implementation and evaluation were performed in a cluster of distributed nodes 
which consisted of six compute nodes: one master and five worker nodes. Data were 
replicated with a factor of 5 to make sure that least time was spent on data trans-
fer latency. Each independent node in the cluster had 8  GB internal memory and 
64-bit processor with four cores. The prediction accuracy with the portion of trip 
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Fig. 9  Processing time of one single machine
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completed is shown in Fig.  8. Construction of the CTW tree on a single node is 
shown in Fig. 9. The CTW tree construction time on Hadoop cluster consisting of 2 
million, 8 million and 12 million is shown in Figs. 10, 11 and 12, respectively.

Fig. 10  Processing time of two million location traces on cluster

Fig. 11  Processing time of eight million location traces on cluster
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Conclusion
In this work, the focus was on the construction of the PPM model in a distributed way 
from a huge corpus of GPS location traces. This model was then used for building a route 
prediction application. The application required road network data and GPS traces. Both 
data sets were sourced from openly available sources: road network data from OSM and 
GPS data from Geolife project. GPS location was decomposed into smaller units called 
user trips. User trips were map matched to road network to convert the data into a set of 
edges. This step is part of data preparation, which is a one-time activity. The map match-
ing of GPS data to road network edges reduces the data size and makes the model con-
struction faster than building a model from raw GPS data. For distributed construction, 
data were stored in HBase data store and MapReduce framework was used for computa-
tion. The design of processing was composed of two steps which are intuitive to imple-
mentation of MapReduce framework. The PPM model was constructed with the edges 
of the PPM tree annotated with the probability of their occurrence. The model was then 
used in the prediction of the route given a partial trajectory. We observed that the model 
construction phase is the most time consuming, but over distributed cluster processing 
the time decreases linearly with the addition of nodes in the cluster. Once the model is 
constructed, route prediction is not a time-consuming process, but is all about travers-
ing a branch of a multiway rooted tree and is linear in search time. All tools and data sets 
used in this work are openly available in the public domain. All the snapshots presented 
in this work were taken during implementation from real data sets.
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