
Scalable prediction by partial match (PPM)
and its application to route prediction
Vishnu Shankar Tiwari*, Arti Arya and Sudha Chaturvedi

Introduction
Route prediction is a key requirement in many location-based important applications
such as vehicular ad hoc networks, traffic congestion estimation, resource prediction
in grid computing, vehicular turn prediction, travel pattern similarity, and pattern min-
ing. Route prediction is a problem which deals with, given a sequence of road network
graph edges already traveled by the user, predicting the most probable edge of the net-
work to be traveled. Our approach is to build a prediction by partial match (PPM) model
from a huge corpus of sequential trajectories traveled by the user in the past. PPM is
widely used in various applications in the area of data compression and machine learn-
ing (Begleiter et al. 2004). Time-stamped GPS traces are collected over a long period

Abstract 

Route prediction plays a vital role in many important location-based applications such
as resource prediction in grid computing, traffic congestion estimation, vehicular ad
hoc networks, and travel recommendation. The goal of this work is to design a scalable
route prediction application based on prediction by partial match (PPM) modeling of
user travel data. PPM is one of the widely used techniques for text compression as well
as string sequence indexing and for prediction. PPM tree construction from the huge
volume of data by sequential processing is time consuming in practical implementa-
tion. Existing techniques are designed for single machine and their implementation on
the distributed environment is still a challenge. This work focuses on achieving a hori-
zontal scalability of PPM and addresses various challenges in distributed construction,
such as reducing I/O and parallel computation of sequences, and comes up with a final
PPM tree in distributed environment without sacrificing accuracy. A huge corpus of
GPS data set is map matched to the road network extracted from the OpenStreetMap
and the PPM tree is built on the edges of the road network. A two-step construction of
the PPM tree is proposed, which is extended to execute over the MapReduce frame-
work. The MapReduce framework running over the Hadoop distributed file system is
used for distributed processing. A horizontally scalable PPM model is built and evalu-
ated for route prediction from a huge corpus of historical GPS traces. Data sets used are
GPS traces and road networks. Both of these used in this work are taken from an openly
available corpus. Distributed construction of PPM was proposed and evaluated on
Hadoop cluster using MapReduce and the detailed results are presented.

Keywords:  PPM, Big data, Scalability, MapReduce, Route prediction

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Tiwari et al. Appl Inform (2018) 5:4
https://doi.org/10.1186/s40535-018-0051-z

*Correspondence:
vishnustiwari@gmail.com
Visvesvaraya Technological
University, Bangalore,
Karnataka, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40535-018-0051-z&domain=pdf

Page 2 of 16Tiwari et al. Appl Inform (2018) 5:4

of time. The chronological huge sequence of GPS traces is broken down into smaller
units called trip (Froehlich and Krumm 2008; Tiwari et al. 2013). Trips are mapped to
road network graph using map matching process which identifies the object’s location
on the road network graph (Tiwari et al. 2014; Bernstein and Kornhauser 1996; Zhou
and Golledge 2006). PPM tree-based model is constructed from trips composed of
an ordered sequence of road network edges. Given a trajectory traveled by the user, a
lookup is done in the PPM tree-based model and the most likely edge is found.

Cleary and Witten invented PPM back in (1984). Many versions of PPM evolved there-
after (Moffat 1990; Cleary et al. 1995; Teahan 1995; SchüRmann and Grassberger 1996).
PPM models learn from historical occurrences of sequences to predict the probability
of a specific data appearing after a given data sequence. For experiments in this work,
a version PPM-C is used. We explain the process of construction of PPM-C, followed
by distributed construction of the same. Real applications using PPM deals with pro-
cessing of huge data sets, and processing such volume sequentially and coming up with
a PPM model is a bottleneck. Attempts have been made to achieve scalability by add-
ing processors and memory (Gilchrist 2004; Joel and Sirota 2012; Effros 2000). However,
distributed construction of PPM is still a challenge. In the proposed work, scalability
is achieved by decomposing GPS traces into trips and processing them in parallel and
finally consolidating them to form the PPM model. A set of user trips is decomposed
into smaller sets and ported to compute a module known as mappers. Mappers com-
pute the variable order contexts as key–value pairs. In each case, the key is the context
and value is the occurrence frequency in the training set. Key–value pairs from various
mappers are emitted to the reducer node. Reducer consolidates the occurrences of vari-
ous contexts and inserts in the PPM trie. The final tree produced by the reducer is the
PPM model which is used for route prediction. The major contribution of this work is
a technique of distributed computation of PPM and its application in route prediction.
All experiments and implementations are done on real data sets available openly in the
public domain.

PPM tree‑related work and literature
Prediction by partial match (PPM) is a context modeling-based adaptive statistical data
compression technique. It has evolved as a better alternative for solving many problems
in the field of biomedical engineering, natural language processing and artificial intelli-
gence. PPM models use a set of historical occurrences of sequences to predict the prob-
ability of a specific symbol appearing at a given position in an input stream (Begleiter
et al. 2004). Arithmetic encoding was proposed in 1976, after which soon PPM variants
PPM-A and PPM-B were invented by Cleary and Witten (1984). These were further
improved by Moffat (1990), resulting in PPM-C and PPM-D. PPM-D was proved show
a bit more improvement in some cases. All these variants of PPM are more or less same,
but only differ in the way probability is computed. In all the cases, the PPM model is a
mix of lower-order models. If unsuitable results are found with the higher-order model,
then it falls back to lower-order models (context of lesser length). Hiroyuki et al. (2005)
presented an unbounded version of PPM known as PPM*, used for the classification of
text. However, it proposed the use of finite deterministic contexts. Cleary et al. (1995)
also proposed an unbounded variant of PPM, but scalability and parallelism were not

Page 3 of 16Tiwari et al. Appl Inform (2018) 5:4

addressed. It was well established that it performs well in compression, language iden-
tification, text prediction, word segmentation, text categorization, etc. Gilchrist et al.
(2004) proposed parallel computation with more focus on BZIP2 in a multi-processor
system. Effros et al. (2004) presented an improvement on PPM, but parallelism was
not addressed. Begleiter et al. (2004) further explored PPM and successfully applied it
to artificial intelligence (AI) applications including text prediction and music recogni-
tion and it worked well. Celikel et al. (2005) applied PPM for language recognition and
proved promising results. The objectives of almost all researches on PPM were either
improving its accuracy and execution on a single machine or its application in differ-
ent fields of study. In spite of their huge applicability, parallel execution and PPM model
construction were hardly explored. The objective of this research is to come up with a
technique for distributed parallel construction of the PPM model tree. The major mile-
stones in PPM are as listed in Table 1.

PPM tree basics

Time-stamped GPS traces are collected over a long period of time. GPS traces are in
the form

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

 , which represents the object’s location
(

xtk , xtk
)

 at time tk . Chronological huge sequences of GPS traces are broken down into
smaller units called trips (Froehlich and Krumm 2008; Tiwari et al. 2013). A user trip
T = (ps,ts,pe,te) is an ordered sequence of GPS location data points (pi, ti)∀1 ≤ i ≤ n
where ps, pe are the start and end positions and ts, te are the start and end time of trips,
respectively.

Two trips T1 and T2 are said to be consecutive if the end of the first trip is in the same
position as the end of the second trip and there is a time gap between the two. A user
trip plotted on OpenStreetMap (OSM) base images is as shown in Fig. 1.

T =

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtm , ytm, tm
)

,

ps = (xt0 , yt0,), ts = t0, pe = (xtm , ytm,), ts = tm.

Table 1  Important PPM construction algorithms

Complexity Parallel Probabilistic

Bernstein and Kornhauser (1996) O(n2) No Yes

PPM-A (Cleary and Witten 1984) O(n2) No Yes

PPM-B (Cleary and Witten 1984) O(n2) No Yes

PPM-C (Moffat 1990) O(n2) No Yes

PPM-D (Moffat 1990) O(n2) No Yes

Cleary and Witten (1995) O(n2) No Yes

Teahan (1995) O(n2) No Yes

Joel and Sirota (2012) O(n2) No Yes

Effros (2000) O(n2) No Yes

PPM* (Hiroyuki et al. 2005) O(n2) No Yes

Celikel (2005) O(n2) No Yes

Proposed PPM O(n2) Yes Yes

Page 4 of 16Tiwari et al. Appl Inform (2018) 5:4

Trips are mapped to road network graph using map matching process which iden-
tifies the object’s location on the road network graph (Quddus 2006; Quddus et al.
2006; Greenfeld 2002). An example of a road network extracted from OSM is shown
in Fig. 2. Map matching is function f, for which the input is the GPS location and the
road network graph, and the output is the edge of the road network.

where sequence S is an ordered sequence of road network edges. Figure 3 shows the
GPS traces corrected and mapped to the road network. Let ∑ = {e1,e2,e3,e4,e5} be a
finite set of all the edges of digitized road network and ∑* represent all finite length
trips possible. Any trip a user makes essentially belongs to ∑ *. Let X = e0,e1,…,en−1 with
xi ∈

∑

andX ∈
∑∗ be a trip, then the length of the trip is given by |X| = |e0,e1,….,en−1|.

The ordered arrangement of all sequences sσ , where σ is the symbol and s
is the context of σ , is compact and TRIE is known as the PPM tree. For dem-
onstration purpose, let us assume alphabet set ∑ = {e1,e2,e3,e4,e5} and a string
X = e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1 . All the contexts with length d = 2 are as shown
in Table 2 and the resulting PPM tree is as shown in Fig. 4.

f
((

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

)

→ S,

Fig. 1  User GPS traces representing a trip made by user

Fig. 2  Road network plotted over the OSM map

Page 5 of 16Tiwari et al. Appl Inform (2018) 5:4

Prediction by partial match (ppm) tree construction
Two‑phase PPM tree construction

We propose a two-step process to compute the PPM trie from user trips. The first
phase computes all sequences sσ , where σ is the symbol and s is the context of σ ,
and the second phase constructs the trie from sequences computed in first phase. The
algorithm scans one alphabet at a time and adds to the dictionary, new phrases which

Fig. 3  User trip mapped to the road network

Table 2  All contexts computed for PPM construction

S. no. D Context (s) Symbol (σ) sσ

1 2 e1, e2 e5 e1, e2, e5

2 2 e2, e5 e1 e2, e5, e1

3 2 e5, e1 e3 e5, e1, e3

4 2 e1, e3 e1 e1, e3, e1

5 2 e3, e1 e4 e3, e1, e4

6 2 e1, e4 e1 e1, e4, e1

7 2 e4, e1 e2 e4, e1, e2

Fig. 4  PPM tree construction

Page 6 of 16Tiwari et al. Appl Inform (2018) 5:4

are shortest and not yet discovered. The subsequence generation process is repre-
sented in Algorithm 1.

Algorithm I: Context and frequency calculation
Input: String and context length = constant

Output: Data map ′ of all contexts including target symbol σ with frequency ′ (,)

Algorithm:
1. Instantiate an empty map ′

2. Scan over from left to right and for each substring ′ of length | ′ | = + 1:
I. if ′ ∉ ′ then insert ′ as key and 1 as value into map ′

II. if ′ ∊ ′ then increment value by 1 for key ′ (′)

The following sequence is used for demonstration: X = e1,e2,e5,e1,e3,e1,e4,e1,e2,e5,e1. All
context s of length d = 2 along with target symbol σ denoted by sσ computed by Algo-
rithm 1, is as shown in Table 3. The length of string X is denoted by n. All contexts of
length d in X can be calculated in linear time Θ(n) by scanning X from left to right and
maintaining a window of size d. The Window is advanced by one unit on scanning one
symbol. The maximum number of context strings each of length d that can appear in
map is Θ(n − d) ≈ Θ(n), where d ≪ n. This can happen only if contexts do not overlap;
otherwise in practice, the number of contexts is ≤ Θ(n).

The second phase starts with a tree from scratch and keeps on inserting context sequences
sσ , obtained as input from the first step. For a new context which is not seen earlier, a com-
pletely new branch is created. Otherwise a path in tree is searched which is matching/over-
lapping with current context. All the nodes in overlapping path is increased by frequency of
occurrance and remaining nodes are inserted at the end of overlapping path. The process is
explained in Algorithm 2. The resultant PPM tree is constructed by Algorithm 2 from the
map of context strings in Table 3 including the frequency count.

Algorithm II: PPM Tree Construction
Input: Map ′ of all contexts including target symbol σ with frequency (,)
Output: PPM Tree with frequency
Algorithm:

1. Instantiate an empty tree
2. for each < , > pair < , >∊ ′ (,)

I. Traverse tree till any branch has overlap with and increment each node by
II. For remaining alphabets of fork a branch starting last node till where overlap was found

in step I.
III. For each node in new branch set count equal to

3. Return resultant tree

Table 3  All contexts computed by Algorithm 1

S. no. d Context (s) Symbol (σ) sσ Frequency (f)

1 2 e1, e2 e5 e1, e2, e5 2

2 2 e2, e5 e1 e2, e5, e1 2

3 2 e5, e1 e3 e5, e1, e3 1

4 2 e1, e3 e1 e1, e3, e1 1

5 2 e3, e1 e4 e3, e1, e4 1

6 2 e1, e4 e1 e1, e4, e1 1

7 2 e4, e1 e2 e4, e1, e2 1

Page 7 of 16Tiwari et al. Appl Inform (2018) 5:4

Distributed construction of the PPM tree

To achieve a distributed construction of the CTW tree-based model, the two-step pro-
cess described in the earlier section is extended to be executed over the Hadoop clus-
ter leveraging the MapReduce computation framework. The first phase is executed by
the mapper module. GPS traces are decomposed into smaller units called trips and map
matched to road network. Trips as ordered sequence of road network edges are grouped
into smaller sets and processed by mapper module. All the contexts, sσ , are generated by
the mapper for each symbol σ in the trip and are put into a map which stores sequence
as key and frequency as value. Implementation of the mapper module is as described in
Algorithm 3.

Algorithm III - Mapper function: Context and frequency calculation of local partition
Input: Split chunk ’ of original data string and context length = constant

Output: Data map ′ of all contexts including target symbol σ with frequency ′ (,)

Algorithm:
1. Instantiate an empty map ′

2. Scan over from left to right and for each substring ′ of length | ′ | = + 1:
I. if ′ ∉ ′ then insert ′ as key and 1 as value into map ′

II. if ′ ∊ ′ then increment value by 1 for key ′ (′)
3. Send data map ′to reducer function

To demonstrate the distributed construction of the PPM tree, we take a string below.
This will be used as a running example throughout further discussions.

e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1.

Table 4  All contexts with frequency computed by m1

S. no. d Context (s) Symbol (σ) sσ Frequency (f) 〈K,V〉

1 2 e1, e2 e5 e1, e2, e5 2 〈e1, e2, e5,2〉

2 2 e2, e5 e1 e2, e5, e1 2 〈e2, e5, e1,2〉

3 2 e5, e1 e3 e5, e1, e3 1 〈e5, e1, e3,1〉

4 2 e1, e3 e1 e1, e3, e1 1 〈e1, e3, e1,1〉

5 2 e3, e1 e4 e3, e1, e4 1 〈e3, e1, e4,1〉

6 2 e1, e4 e1 e1, e4, e1 1 〈e1, e4, e1,1〉

7 2 e4, e1 e2 e4, e1, e2 1 〈e4, e1, e2,1〉

Table 5  All contexts with frequency computed by m2

S. no. d Context (s) Symbol (σ) sσ Frequency (f) 〈K,V〉

1 2 e5,e1 e3 e5, e1, e3 2 〈e5, e1, e3, 2〉

2 2 e1, e3 e1 e1, e3, e1 2 〈e1, e3, e1, 2〉

3 2 e3, e1 e4 e3, e1, e4 1 〈e3, e1, e4, 1〉

4 2 e1, e4 e1 e1, e4, e1 1 〈e1, e4, e1., 1〉

5 2 e4, e1 e2 e4, e1, e2 1 〈e4, e1, e2, 1〉

6 2 e1, e2 e5 e1, e2, e5 1 〈e1, e2, e5, 1〉

7 2 e2, e5 e1 e2, e5, e1 1 〈e2, e5, e1, 1〉

Page 8 of 16Tiwari et al. Appl Inform (2018) 5:4

For the sake of simplicity and to demonstrate the concept, the input string is split into
two chunks. For each of the split, a mapper is instantiated.

The output of both mappers m1 and m2 are summarized in Tables 4 and 5, respectively.
In this example, context sσ serves as the key and frequency (f) as value.

The output of the mapper modules is a set of key–value pairs, where the key is the
context and value as the frequency is emitted as input to the reducer. The framework
does a consolidation by adding the frequencies for each context as key. For example, if
from one mapper the value received is 〈e1, e2 | 4〉 and 〈e1, e2 | 10〉, then after merging
the final entry becomes 〈e1, e2 | 14〉. It is ensured that each key–value pair is unique
during this step. If multiple entries exist for the same key, then consolidation is done
before sending it to the reducer. If data do not fit into memory, then it is periodically
written to disk (Chang et al. 2008; Jeffrey and Sanjay 2004; Lammel 2008). The reducer
starts with a tree from scratch and keeps on inserting context sequences iteratively.
For a new context which is not seen earlier, a completely new branch is created. Oth-
erwise a path in tree is searched which is matching/overlapping with current context.
All the nodes inoverlapping path is increased by frequency of occurrance and remain-
ing nodes are inserted at the end ofoverlapping path. The result of the consolidation
of the output of mappers in Tables 4 and 5 is as shown in Table 6. Implementation of
the reducer is as described in Algorithm 4.

Algorithm IV - Reducer function: PPM Tree Construction
Input: Map ′ of all contexts including target symbol σ with frequency (,)

Output: PPM Tree with frequency
Algorithm:

1. Instantiate an empty tree
2. for each < , > pair < , >∊ ′(,)

I. Traverse tree till any branch has overlap with and increment each node by
II. For remaining alphabets of fork a branch starting last node till where overlap was found

in step I.
III. For each node in new branch set count equal to

3. Return resultant tree

Route prediction using the PPM tree

The objective is to predict the next edge σ ∊ E on the road network given the user
traveled trajectory S =

(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

 , based on information
learned from historical user travel data. To predict next edge σ , S is map matched

Split S1 = e1, e2, e5, e1, e3, e1, e4, e1, e2, e5, e1 processed by mapperm1,

Split S2 = e5, e1, e3, e1, e4, e1, e2, e5, e1, e3, e1 processed by mapperm2.

Table 6  Result of merging of intermediate key/value pairs by MapReduce framework

S. no. d Context (s) Symbol (σ) Key (k) Frequencies 〈K,〈sum(occurence)〉〉

1 2 e1, e2 e5 e1, e2, e5 2, 1 〈e1, e2, e5,〈3〉〉

2 2 e2, e5 e1 e2, e5, e1 2, 1 〈e2, e5, e1,〈3〉〉

3 2 e5, e1 e3 e5, e1, e3 1, 2 〈e5, e1, e3,〈3〉〉

4 2 e1, e3 e1 e1, e3, e1 1, 2 〈 e1, e3, e1,〈2〉〉

5 2 e3, e1 e4 e3, e1, e4 1, 1 〈e3, e1, e4,〈2〉〉

6 2 e1, e4 e1 e1, e4, e1 1, 1 〈e1, e4, e1,〈2〉〉

7 2 e4, e1 e2 e4, e1, e2 1, 1 〈e4, e1, e2,〈2〉〉

Page 9 of 16Tiwari et al. Appl Inform (2018) 5:4

to digitize to road network using the map matching process f as described in earlier
sections.

Trajectory S is the converted form of an ordered sequence of road network edges
and can be considered as a Markov chain, where the highest possibility of occurrence
among all other possibilities is

p is the conditional probability of occurrence of σ given the event eiei+1 . . . ei+n has
already occurred. PPM trie constructed has information learned from historical travel
data of user. Since PPM is an unbounded Markov model, the corresponding tree may be
balanced and each path from the root may be of different length. This makes PPM a vari-
able order Markov model. In the worst case, one has to traverse the longest branch of the
PPM tree. If the length of the longest branch of tree is k, then the complexity of the pre-
diction using the PPM trie is O(k) . The probabilities of occurrence of each node starting
with the root node is as shown in Fig. 5. Route prediction function denoted by a function
Route_Predict can be represented as:

The below cases demonstrate the prediction Route_Predict function over the PPM
model constructed by Algorithm 4.

Case I:	� This is the case when the user is at root node which signifies the user has
not started travel. We represent the user trajectory by S = ε . From the
PPM trie, it can be seen that the various possibilities for traversals are
{e1, e2, e3, e4, e5} . The probability for each case is as follows:

	�

f
(

xt0 , yt0, t
0
)

,
(

xt1 , yt1, t
1
)

. . .
(

xtn , ytn, t
n
)

→ eiei+1 . . . ei+n.

p (σ |eiei+1 . . . ei+n).

Route_Predict(eiei+1 . . . ei+n) → σ .

p(e1|ε) =
8

18
, p(e2|ε) =

3

18
, p(e3|ε) =

2

18
,

p(e4|ε) =
2

18
, p(e5|ε) =

3

18
.

Fig. 5  PPM tree with probability distribution

Page 10 of 16Tiwari et al. Appl Inform (2018) 5:4

	 Hence, Route_Predict(ε) → e1.

Case II:	� Another case we explore is when edge e2 has been traversed so far, S = e2 .
The length of the input trajectory is 1 unit only and consists of a single edge.
The candidate edge after e2 already traversed is only one and is e5. In this
case, the probability of occurrence of e5 after e2 as context is p(e5|e2) = 1 .
Hence, Route_Predict (e2) → e5.

Case III:	� The next case is when the input trajectory is S = {e1} and only one edge e1
has been traversed so far. However, there are multiple candidates ({e2,e3})
with high probability after edge e1 is already traversed. The probabilities of
each candidate is as follows:

	�

	 �Hence, two edges are likely and will be resolved once more edges are
traveled.

Case IV:	� Next, we consider a case when multiple edges are traveled and the input to
Route_Predict function is {e1, e2} . The possible candidate for travel next is
edge e5, having the said event of traveling over {e1, e2} already occurred. p
(e5|e1,e2) = 1 and hence Route_Predict(e1,e2) → e5.

Case V:	� Next, we consider a case when the user has traveled a path which has
not yet been seen by the PPM model. For example, if the user has trave-
led path {e3,e4} but in the trie no such path exists, this means something
which has not occurred in the past. Hence, the prediction function result is
Route_Predict(e3, e4) → ε . This can happen when the user has reached the
destination and there is nothing to predict, and in another case it is a new
route. In the latter case, new routes when found should be sent to the model
for learning.

Case VI:	� All the above cases focused on predicting one hop next edge. The same
model can be used to predict an end to the end path as well. The input tra-
jectory is ε . The next edge selected is e1. From e2, the next probable edge is
e5 and so on

Implementation and evaluation
Map data: spatial road network data

OpenStreetMaps provides various kinds of geographical spatial and non-spatial data
sets such as water bodies, international boundaries, state boundaries, and road net-
works. In this work, we use digitized road network data downloaded from OSM. OSM
provides open source data under public open content license (https​://www.opens​treet​
map.org). Data can be downloaded in a variety of format images, XML files, shape
files, etc. We used only road network data from OSM. Data can be downloaded using
the OSM interface (https​://www.opens​treet​map.org) if the area is smaller. If the area is
larger, for example, the official vendor portal can be used (https​://www.cloud​made.org).
Data are available in various standard formats such as image (.jpg, .png, etc.) or XML
which comes with extension.osm. We used.osm format which we parsed using open
source tool called Osm2pgsql (wiki.openstreetmap.org/wiki/Osm2pgsql). It is used to

p(e2|e1) =
3

8
, p(e3|e1) =

3

8

https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.cloudmade.org

Page 11 of 16Tiwari et al. Appl Inform (2018) 5:4

convert OSM data into PostGIS compatible.sql files. The SQL data are then loaded to
spatial database PostGIS. We used GeoServer tool for all data visualization. GeoServer
supports easy connectivity to PostGIS database. A snapshot of the OSM Beijing road
network is as shown in Fig. 6.

User location traces data

GPS data corpus used in this research work is from Geolife project. GPS data collec-
tion effort was made as Geolife project for the period 2007–2012 (Zheng et al. 2009;
Zheng et al. 2008; Zheng et al. 2010). Geolife GPS data set contains time-stamped
positional information of around 182 users. It contains around 17,621 trajectories
which have 24,876,978 GPS data points. The length of all trajectories sums up to 1.2
million km and a total duration of around 48+ thousand hours. Devices used to cap-
ture data are GPS loggers as well GPS phones with different recording frequencies.
Of all the trajectories, 91% trajectories have data collection frequency of every 1–5 s
or 5–10 m per point and are dense data (Lammel 2008). Data collections were done
from users while performing a variety of activities ranging from routine tasks like
the movement from home to office and back to home as well other non-routine tasks

Fig. 6  OSM road network

Fig. 7  Geolife trajectory sample data

Page 12 of 16Tiwari et al. Appl Inform (2018) 5:4

such as sightseeing, cycling, and shopping etc. (Zheng et al. 2009; Zheng et al. 2008;
Zheng et al. 2010). Figure 7 shows GPS traces plotted from Geolife GPS data corpus.

Implementation and evaluation were performed in a cluster of distributed nodes
which consisted of six compute nodes: one master and five worker nodes. Data were
replicated with a factor of 5 to make sure that least time was spent on data trans-
fer latency. Each independent node in the cluster had 8 GB internal memory and
64-bit processor with four cores. The prediction accuracy with the portion of trip

0

10

20

30

40

50

60

70

80

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Accuracy-Frequent Routes Accuracy-Less Frequent Routes

Trip Completed (miles)

)
%(

noitciderPtcerroC

Fig. 8  Prediction accuracy

Fig. 9  Processing time of one single machine

Page 13 of 16Tiwari et al. Appl Inform (2018) 5:4

completed is shown in Fig. 8. Construction of the CTW tree on a single node is
shown in Fig. 9. The CTW tree construction time on Hadoop cluster consisting of 2
million, 8 million and 12 million is shown in Figs. 10, 11 and 12, respectively.

Fig. 10  Processing time of two million location traces on cluster

Fig. 11  Processing time of eight million location traces on cluster

Page 14 of 16Tiwari et al. Appl Inform (2018) 5:4

Conclusion
In this work, the focus was on the construction of the PPM model in a distributed way
from a huge corpus of GPS location traces. This model was then used for building a route
prediction application. The application required road network data and GPS traces. Both
data sets were sourced from openly available sources: road network data from OSM and
GPS data from Geolife project. GPS location was decomposed into smaller units called
user trips. User trips were map matched to road network to convert the data into a set of
edges. This step is part of data preparation, which is a one-time activity. The map match-
ing of GPS data to road network edges reduces the data size and makes the model con-
struction faster than building a model from raw GPS data. For distributed construction,
data were stored in HBase data store and MapReduce framework was used for computa-
tion. The design of processing was composed of two steps which are intuitive to imple-
mentation of MapReduce framework. The PPM model was constructed with the edges
of the PPM tree annotated with the probability of their occurrence. The model was then
used in the prediction of the route given a partial trajectory. We observed that the model
construction phase is the most time consuming, but over distributed cluster processing
the time decreases linearly with the addition of nodes in the cluster. Once the model is
constructed, route prediction is not a time-consuming process, but is all about travers-
ing a branch of a multiway rooted tree and is linear in search time. All tools and data sets
used in this work are openly available in the public domain. All the snapshots presented
in this work were taken during implementation from real data sets.
Authors’ contributions
VST, SC and AA discussed the idea of PPM with respect to route prediction and its implementation aspects. VST and SC
implemented the idea and contributed toward the first draft of the paper under the guidance of AA. AA and SC thor-
oughly proofread the manuscript and made all vital corrections. All authors read and approved the final manuscript.

Fig. 12  Processing time of twelve million location traces on cluster

Page 15 of 16Tiwari et al. Appl Inform (2018) 5:4

Authors’ information
Vishnu Shankar Tiwari is a postgraduate (master of technology—M Tech) in computer engineering from the Depart-
ment of Computer Engineering, Indian Institute of Technology (IIT)-Bombay, Mumbai, India. He also holds an M Tech
(computer applications) degree from the YMCA University of Science and Technology, India, and master of computer
application (MCA) from the Maharshi Dayanand University, India. He currently works as Vice President in Technology at
J.P. Morgan Chase & Co. with a total experience of more than 10 years in the teaching and software industry.

Arti Arya is Head of Department (HOD) and Professor at the Department of Computer Application, PES Institute
of Technology, Bangalore South Campus. She holds Ph.D. in computer science from the Faculty of Technology and
Engineering, Maharshi Dayanand University, India. She has an M Tech degree in computer science from the Allahabad
Agricultural Institute, and master of science (mathematics) and bachelor of science (mathematics) from the Delhi Univer-
sity. Her areas of interests are spatial data mining, knowledge based systems, machine learning, artificial intelligence and
data analysis. She has approximately 17 years of teaching experience (with 10 years of research) at the undergraduate
and post graduate level. She is Senior Member IEEE, Life Member CSI and Life Member IAENG.

Sudha Chaturvedi is Lead Software Engineer in Aricent Technologies with more than 10 years of experience in the
software industry and teaching/research. She holds master of technology—M Tech degree in computer engineering.
Additionally, she holds master of computer applications (MCA) and master of business administration (MBA) degrees.
She has expertise in implementation of machine learning models.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data and material used is open source. Majorly, GPS data points are from GPS trajectory data set collected in
(Microsoft Research Asia) Geolife project. Data set is made available for research from 2012 by Microsoft Research
(https​://geoti​me.com/gener​al/geoli​fe-proje​ct/). Map data used is from Open Street Map (OSM) which is an open
project (https​://www.opens​treet​map.org).

Consent for publication
Authors consent the right to publish this article by Springer Open.

Ethics approval and consent to participate
This is author’s own personal research work. Authors self-approves ethical approval and provide consent for
participation.

Funding
This work is purely author’s own work and authors own funding required for publishing of this research work.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 April 2018 Accepted: 11 August 2018

References
Begleiter R, El-Yaniv R, Yona G (2004) On prediction using variable order Markov models. J Artif Intell Res 22:385–421
Bernstein D, Kornhauser A (1996) An introduction to Map Matching for personal navigation assistants, technical

report, New Jersey TIDE Center Technical Report
Celikel E (2005) A cryptographic approach to language identification: PPM. In: Proceedings of the 7th Int’l conference

on enterprise information systems (ICEIS)
Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a dis-

tributed storage system for structured data. ACM Trans Comput Syst 26(2):1–26. https​://doi.org/10.1145/13658​
15.13658​16

Cleary J, Witten I (1984) Data compression using adaptive coding and partial string matching. IEEE Trans Commun
32(4):396–402. https​://doi.org/10.1109/tcom.1984.10960​90

Cleary JG, Teahan WJ, Witten IH (1995) Unbounded length contexts for PPM. In: Storer JA, Cohn M (eds). Proceedings
DCC ‘95, data compression conference: 28–0 Mar 1995. IEEE Computer Society Press, Snowbird, pp 52–61. https​
://doi.org/10.1109/dcc.1995.51549​5

Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th con-
ference on symposium on operating systems design & implementation, December 06-08, 2004, San Francisco

Effros M (2001) PPM performance with BWT complexity: a new method for lossless data compression. In: Proceed-
ings of data compression conference, DCC 2000

Froehlich J, Krumm J (2008) Route prediction from trip observations, society of automotive engineers (SAE) 2008
World Congress, April 2008, Paper 2008-01-0201

Gilchrist J (2004) Parallel data compression with bzip2. In: Proc. of IASTED Intl. Conf. on Par. and Distrib. Computing
and Sys. pp 559–564

https://geotime.com/general/geolife-project/
https://www.openstreetmap.org
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/tcom.1984.1096090
https://doi.org/10.1109/dcc.1995.515495
https://doi.org/10.1109/dcc.1995.515495

Page 16 of 16Tiwari et al. Appl Inform (2018) 5:4

Greenfeld JS (2002) Matching GPS observations to locations on a digital map. In: Proceedings of the 81st annual
meeting of the transportation research board, Washington

Hiroyuki A, Kazuhiro K, Takashi I, Shigeichi H (2005) A PPM* algorithm using context mixture. In the Journal of IEIC, pp
35–40

Joel R, Sirota V (2012) FPGA-based data compressor based on Prediction by Partial Matching. In: IEEE 27th convention
of electrical and electronics engineers, Israel

Lammel R (2008) Google’s MapReduce Programming Model—revisited. Sci Comput Program 70:1–30
Moffat A (1990) Implementing the PPM data compression scheme. IEEE Trans Commun 38(11):1917–1921. https​://

doi.org/10.1109/26.61469​
Quddus MA (2006) High integrity map-matching algorithms for advanced transport telematics applications, Ph.D.

Thesis. Centre for Transport Studies, Imperial College London
Quddus MA, Noland RB, Ochieng WY (2006) A high accuracy fuzzy logic based map matching algorithm for road

transport. J Intell Trans Syst 10(3):103–115
SchüRmann T, Grassberger P (1996) Entropy estimation of symbol sequences. Chaos 6(3):414–427. https​://doi.

org/10.1063/1.16619​1
Teahan WJ (1995) Probability estimation for PPM. In: Proceedings NZCSRSC’95
Tiwari VS, Arya A, Chaturvedi SS (2013) Route Prediction using trip observations and map matching, advance com-

puting conference (IACC). In: 2013 IEEE 3rd international, pp 583–587
Tiwari VS, Arya A, Chaturvedi S (2014) Framework for horizontal scaling of map matching using MapReduce. In: IEEE, 13th

international conference on information technology, ICIT 2014. http://www.icit2​014.in/. Accessed 22–24 Dec 2014
Zheng Y, Zhang L, Xie X, Ma W (2009) Mining interesting locations and travel sequences from GPS trajectories. In: Pro-

ceedings of international conference on World Wild Web (WWW 2009). ACM Press, Madrid Spain, pp 791–800.
Zheng Y, Li Q, Chen Y, Xie X, Ma W (2008) Understanding mobility based on GPS data. In: Proceedings of ACM conference

on Ubiquitous Computing (UbiComp 2008). ACM Press, Seoul, Korea, pp 312–321.
Zheng Y, Xie X, Ma W (2010) GeoLife: a collaborative social networking service among user, location and trajectory. IEEE

Data Eng Bull 33(2):32–40
Zhou J, Golledge R (2006) A three-step map matching methods in GIS environment: travel/transport study perspective.

Int J Geogr Inf Syst. X, X

https://doi.org/10.1109/26.61469
https://doi.org/10.1109/26.61469
https://doi.org/10.1063/1.166191
https://doi.org/10.1063/1.166191
http://www.icit2014.in/

	Scalable prediction by partial match (PPM) and its application to route prediction
	Abstract
	Introduction
	PPM tree-related work and literature
	PPM tree basics

	Prediction by partial match (ppm) tree construction
	Two-phase PPM tree construction
	Distributed construction of the PPM tree
	Route prediction using the PPM tree

	Implementation and evaluation
	Map data: spatial road network data
	User location traces data

	Conclusion
	Authors’ contributions
	References

