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Introduction
Nowadays, about 1.25 million people die each year as a result of road traffic crashes 
(World Health Organization WHO). Without sustained action, road traffic crashes 
are predicted to become the leading cause of death by 2030, including among the 
growing population of senior drivers. 10–20% of all traffic accidents are made by non-
vigilant drivers and 60% of these accidents are due to fatigue (Awake Consortium 
2001). Fatigue is defined as a transitional state between awakenings and sleeping. It 
affects the skills required for a safe driving, by increasing the driving error frequency 
as well as their amplitudes and variability. It also reduces the driver perception and 
decision-making capability to control the vehicle (Sahayadhas et  al. 2012). Fatigue 
depends on several endogenous and exogenous factors, for example, age, motivation 
and driving time. Otmani et al. (2005) demonstrated that drivers are fatigued after 20 
min of driving, and countermeasures must be considered before the driver reaches 
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the final stage of fatigue ‘somnolence’. However, the problem is due to the difficulty for 
the driver to perceive his real level of fatigue, as it is sensation based and subjective. 
Authors in Sáez-Francàs et al. (2014) confirm the risk of non-fatigue perception and 
how it affects decision making.

In intelligent transportation systems (ITS) field, several research projects have focused 
on the detection of the driver’s state (fatigue, sleepiness, and inattention), which can 
reduce accidents and improve the public safety (Azim et al. 2014; Bergasa and Nuevo 
2006; Ji et al. 2004; Jin et al. 2013). Nowadays, ITS community is giving wide attention to 
the development of autonomous cars, but despite the progress of these researches, the 
trust to adopt the driving of fully autonomous cars is not high among many potential 
users (older adults), whereas greater than 50% of these users prefer helper cars (Abra-
ham et  al. 2016), which can be considered as countermeasures when driver’s state is 
unsafe. Hence, the automatic identification of the driver’s state, especially fatigue, is still 
a challenging task.

The main objective of driver’s fatigue identification researches was to propose pro-
totypes which capture, track and store driver behaviors signals. These signals are then 
analyzed and various characteristics are extracted to describe driver behaviors and iden-
tify its state. Several features have been used to detect driving fatigue, especially those 
describing visual facial expressions signals. The relationships between driving fatigue 
and driver behavior characteristics have been investigated experimentally and per-
formed on a limited set of features such as PERCLOS, head nodding (Of and Carriers 
1998), steering wheel movements (Otmani et al. 2005) and the standard deviation of lane 
position (Thiffault and Bergeron 2003). The use of these features is not substantiated, 
then the results reported in several studies are not consistent, although they are based 
on the same datasets (Azim et al. 2014; Bergasa and Nuevo 2006). In addition, some con-
clusions have been considered with respect to simulation studies, although they are not 
necessarily applicable and nor meaningful in real-world driving.

Moreover, the development of ITS applications is limited by certain constraints, such 
as (1) the response time: if the fatigue detection time is slow, the drivers can fall asleep 
and the risk of accident is greater, (2) the accuracy: it is important to detect rigorously 
fatigue, without distracting or stressing the driver by false alarms, and (3) the computa-
tional and storage costs: ITS are generally embedded systems, which limit their storage 
capacities. In addition to that, classification techniques are more accurate when they are 
provided with more relevant features, but are slower and suffer from the curse of dimen-
sionality phenomenon (Friedman and Bias 1997). Therefore, it is important to reduce 
the features into a relevant, non-redundant subset and without lost of information, as 
well as providing a clear and precise definition of these features.

The aim of this paper was first, to list all quoted features and standardize their for-
mulations. Second, to investigate a hypothesis about the relationships between driving 
fatigue and the vehicle speed in real driving environment, a statistical analysis was per-
formed on driving behaviors, and significant changes were reported in the use of accel-
eration pedal. Therefore, new features are considered to characterize fatigue. Finally, 
a subset of relevant features that would best characterize driving fatigue is identified, 
and classification algorithms demonstrate their efficiency in discriminating fatigued and 
non-fatigued drivers.
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To investigate the importance of fatigue driving features, different feature selection 
techniques (FS) have been combined to design an ensemble learning for ranking (Duin 
2002; Guan et al. 2014). FS methods are effective to lessen the curse of dimensionality 
problem, they are used in several data engineering fields, such as medical image analy-
sis (Rakoczy et al. 2013), bio-informatics and gene expression data analysis (Mitra and 
Majumder 2004), as well as text mining and natural language processing (Rahate and 
Emmanuel 2013).

This research is interested on senior drivers who are vulnerable to fatigue driving and 
potential customers of automated car or especially helper cars. The experiments are car-
ried out on a fairly large and diversified database. Data are signals collected through the 
eye tracking system “FaceLab” and car sensors, from a real driving sample of 66 senior 
drivers on a highway (around 1 h driving for each driver with some wearing glasses), 
under different climatic and lighting conditions.

The remainder of this paper is organized as follows. The previous works in driver state 
detection are described in "Related works" section. The driving fatigue characterization 
tools, the dataset, the experimental protocol and the considered features, both existing 
and proposed are presented in "Method" section. "Experimental results" section presents 
various established experiments. Finally, "Conclusion" section concludes the paper and 
discusses the approaches for future studies.

Related works
Within the last years, several research works have investigated driving fatigue, they 
can be regrouped according to the used technology: (1) intrusive systems (Engström 
et al. 2005), which measure fatigue based on bio-signals such as heart rate collected by 
electrocardiogram (ECG) sensors, skin temperature, etc., all of which are efficient sys-
tems but less usable because of the body-mounted sensors. (2) Non-intrusive systems 
use cameras or eye-tracking systems based on infrared vision to extract face features 
describing fatigue, or/and, use car sensors mounted on the acceleration pedal and the 
steering wheel, which measure the driving behavior such as steering wheel movement 
(SWM), standard deviation of lane position (SDLP) (Engström et  al. 2005; Joly et  al. 
2018).

Facial expressions are the most used characteristics in fatigue detection. The work of 
Ji et al. (2004) is one of the first studies that investigated driving fatigue through tech-
nological tools. Authors used the means-shift algorithm and Kalman filter to extract 
six visual expressions from videos: PERCLOS, average eye closure speed, frequency 
of head nodding, percentage of saccades, distribution of gaze in time and frequency 
of yawing. These features were modeled using Bayesian Networks and evaluated on 
a randomly selected image sequence that contains 13620 frames. Authors in Sigari 
et al. (2013) have extracted signals from 27 video sequences, captured in real condi-
tions. Videos are preprocessed and several features are computed such as PERCLOS, 
eyelid distance changes (ELDC), eye closure rate and head rotation (ROT). Then, the 
fuzzy expert system was modeled to detect driver fatigue and distraction. 10 drivers 
were the subject of experiments conducted by Bergasa and Nuevo (2006) to detect 
the driver alertness by a fuzzy expert system. They have analyzed the facial expres-
sions related to the eyes: PERCLOS, eye closure duration, blink frequency, and to the 
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head as: head nodding frequency, face position, fixed gaze. These features enabled the 
detection of alertness at 98% accuracy. But on the same drivers (the driving videos 
database is public), in Azim et al. (2014) have shown that based on only two features: 
(1) PERCLOS and (2) Mouth state, tracked and extracted by the Kalman filter and 
the Adaboost algorithm, the fuzzy expert system can detect the driver state with the 
accuracy of up to 100%. A recent study used on a set of face landmark and textures 
of the eye and mouth regions to detect driver drowsiness. Features are tracked and 
extracted by Viola–Jones and fused by the Deep belief network. The experiments 
performed on 30 facial videos of passengers seat on the right of drivers, subjects are 
subjected to 6–8h of straight sleep deprivation, demonstrated a high accuracy in 
drowsiness detection (Zhao et al. 2018).

After several attempts and contributions employing machine-learning techniques 
such as mean-shift, Adaboost and Viola–Jones, as well as other image analysis tools. 
Recent works and automobile manufacturers are addressing more eye-tracking systems, 
like: (1) ‘FaceLAB’, which is able to maintain tracking integrity even lighting and move-
ment perturbations, this technology is used in recent prototypes of vehicle systems as 
Volkswagen. (2) ‘Smart eyes’, which is commercialized in Europe by Volvo and BMW. It 
is also used in Ahlstrom et al. (2013) to extract information about the gaze direction and 
its quality. Ahlstrom et al. (2013) used AttenD to study the driver distraction, on a data-
base of seven drivers. Smart eyes has also been used by Jin et al. (2013), in a simulator to 
extract blink frequency, gaze direction, fix time and the PERCLOS, then these features 
are used by Support Vector Machine (SVM) to detect sleepiness among twelve drivers. 
Miyaji and Kawanaka (2010) have used Adaboost and SVM to classify bio-signals and 
facial expression data coming from ECG and the eye tracking system FaceLAB. Data are 
simulation experiment results, where cognitive and arithmetic charges are applied on 
eight drivers. Engström et  al. (2005) used data from 48 drivers in a simulator and 24 
in a real driving environment, to illustrate the effects of visual and cognitive loads on 
driver performances, when driving simulators and real vehicles on highways, data were 
collected by FaceLab. The proposed prototype is based on facial expressions related to 
the gaze tracking, as well as to bio-signals coming from intrusive systems (EEG) and to 
vehicle behavior (maintaining voice and steering wheel).

Vehicle-based measures (driving behavior) have been also involved in fatigue detec-
tion. Micro-corrections in the steering wheel are reduced for drowsy drivers, following 
this hypothesis the SWM and SDLP have been the most used features, SWM is derived 
from steering wheel angle signal and it has been adopted by Nissan and Renault manu-
facturers. The efficiency of these features has been demonstrated in simulations stud-
ies (Sahayadhas et  al. 2012). However, driving and road conditions related to steering 
wheel micro-corrections are not the same in simulators and real-world environment, for 
instance, driver’s risk perception is reduced in simulators, straight line does not always 
exist in road, and the width of roads and vehicles is variable and controls the extent of 
micro-corrections, the possibility to make steering wheel micro-corrections and their 
extent when there is an overtaking manoeuvre. In addition to that, these features are not 
specific to fatigue and can be caused by other impaired driving types such the influence 
of alcohol and drugs (Sahayadhas et al. 2012). Therefore, SWM and SDLP are less-effec-
tive features for predicting fatigue in real-word driving.
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In short, a large amount of research works have studied the human behavior while 
driving, using different tools to capture and extract the data (eye-tracking systems, cam-
era with videos processing and machine learning tools, etc.); these data were processed 
to extract various features such as PERCLOS (Bergasa and Nuevo 2006; Ji et  al. 2004; 
Jin et  al. 2013; Kong et  al. 2015; Friedrichs and Yang 2010; Darshana et  al. 2015; Sun 
et  al. 2017) and blink frequency (Bergasa and Nuevo 2006; Jin et  al. 2013; Friedrichs 
and Yang 2010; Sun et al. 2017, 2015). (More details are giving in "Driver’s behavior fea-
tures extraction" section). Finally, regarding the driver-state identification, three main 
approaches have been adopted: threshold and probabilistic (Ji et al. 2004), expert system 
(Azim et al. 2014; Bergasa and Nuevo 2006), and classification (Ji et al. 2004; Jin et al. 
2013; Kong et al. 2015; Friedrichs and Yang 2010; Miyaji and Kawanaka 2010; Zhao et al. 
2018). In this work, a literature study revealed that works use different features, chosen 
randomly or according to an unjustified cause. In addition, these works give different 
definitions to the same feature, for example, Kong et al. (2015) defines the PERCLOS as 
being percentage of times in 30 s, when the eye is closed at 30%; while others define it as 
the proportion of time in 3 min, when the eyes are at least 80% closed. Thus, we gather 
a list of all features related to fatigue, this list included the most used features in the 
literature and which are sorted by FS methods, according to their order of importance 
(relevance and non-redundant). It is validated on a set of 66 senior drivers and the data-
base was collected by the eye-tracking system ‘seeing machines’ FaceLAB, while above 
research works used small databases composed of at least 30 real drivers.

Method
In this paper, we characterize driving fatigue using feature selection and classification 
algorithms. The used tools as well as the processes of database collection and preproc-
essing are presented in this section. Figure  1 illustrates the workflow followed in this 
analysis study.

Data collection

Sixty six participants (30 women and 36 men) have been recruited to drive for about 1 
h, they are over 55 years old and have their driving license for 30–47 years. Participants 
should drive an instrumented car (LISA: Smart Laboratory on road Security, Fig. 2), on 
a highway in Montreal city in Canada (Fig.  3), the experiments were spread in differ-
ent hours of the day (10 a.m.–3 p.m.) and over several months (from June to November 
2016), which have led to climatic conditions diversities.

LISA (Fig. 2) is a Nissan Versa 2008, 1.8 S, with automatic transmission, equipped by 
FaceLAB 5.0 system (2 IR-camera) and car sensors such as speed, temperature, pres-
sure, and suspension, which are connected to Evo4 DataLogger. All data are synchro-
nized and recorded by a computer installed on board. FaceLAB captures 60 frames/s 
and represents outputs in separated files: eyes, head, timing, etc. Car sensors generate 
vehicle speed and steering wheel movements signals. Data are captured with 10 frames/s 
frequency.

Driving fatigue is evaluated based on the self-reported fatigue given five times by driv-
ers, twice before and after driving, and three times during experiments. The perceived 
fatigue scale was inspired by the Karolinska sleepiness scale (Kaida et  al. 2006), it is 
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ranging from 0 not at all fatigued to 10 very much fatigued. Participants are asked only 
three times while driving, to avoid distracting the driver, that seems sufficient to have 
an idea about the driver-state changes, and to classify the resulting instances, we use 
the linear spline interpolation (Habermann and Kindermann 2007) to obtain the whole 

Fig. 1  Fatigue characterization workflow

Fig. 2  a The instrumented car LISA (Smart Laboratory on road Security) and b the FaceLab system
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data labels. We define two classes: (1) non-fatigued driver, if its self-ratings < 3 and (2) 
fatigued driver otherwise.

All drivers gave their consent to participate, which was approved by institutional eth-
ics committees.

Data preprocessing

The collected data are multi-modal, coming from different sensors and having different 
frequencies. Therefore, signals are treated separately and then merged.

First, the FaceLab signals are converted, synchronized and the signals represented 
in Table 1 are retrieved. Eyes tacking confidence is given by FaceLAB, this information 
allowed us to filter the eye and head rotation signals as follows: (1) the frames where 

Fig. 3  The path traversed by LISA drivers

Table 1  Signal extracted from FaceLab

Signal Description

el,r Eye closure (left and right)

cl,r Eye closure confidence (left and right)

Blink-freq Blink frequency

Blink-dur Average blink duration

PERCLOS Percentage eyelid closure at 75%

ϕ,ψ Gaze rotation: pitch, yaw angle

Sac Saccade

P_diaml,r Pupil diameter (left and right)

Q0,1,2,3 Head rotation: quaternions
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(cl + cR)/2 < 55% are considered as noise, (2) the head signal is filtered through the 
head yaw angle β > 15◦ . These thresholds are well documented in the literature (Frie-
drichs and Yang 2010).

Second, vehicle speed and steering wheel movements signals are extracted from the 
acceleration pedal and the steering wheel sensors, then they are converted and prepared 
to be merged with FaceLab data.

Third, data are aggregated in windows of 30 s and the considered features are com-
puted (more details about features are presented in “Driver’s behavior features extrac-
tion” section).

Driver’s behavior feature extraction

In this study, we use non-intrusive sensors to identify the most relevant features for 
driver’s fatigue characterization. Therefore, we focus on facial expressions and driving 
behavior features.

Several features have been quoted in the previous researches, especially those related 
to eye and head behaviors. Table 2 summarizes the most quoted features as well as gives 
their significance and corresponding formulas.

Note that, N is the number of valid frames in a window of 30 s, Nclosure75 is the number 
of frames where the eyelid distance is equal to 75% of the total eye size. NTotal closure and 
NTotal opening are the number of frames where the eye is totally closed or opened, respec-
tively, i.e, if its closure is less than 20% of the eye size, or more than 80% of the eye size. 
The NTransition is the number of frames where the eye passes from opened/closed. These 
measures are estimated based on the eye closure signal e (left el and right er ) normalized 
by the cl,r and fused. ϕhead and ψhead are the pitch and yaw angle of head, the results of 
head rotation conversion from quaternions to Euler angles. Nhead frontal position is equal to 
1, if the horizontal head angle is less than 15◦.

Regarding the investigation involving the effectiveness of vehicle-based features to predict 
driving fatigue in real-world, we test the hypotheses which consists of the existence of rela-
tionships between the changes in driving speed (the use of acceleration pedal) and driver 
fatigue, which increases over the time. In fact, it has been demonstrated that drivers can 
become fatigued within 20–25 min of driving (Otmani et al. 2005; Sahayadhas et al. 2012).

Individual differences were analyzed separately and have lead to these hypotheses. 
Therefore, we have attempted to verify our hypothesis about the effect of fatigue on driv-
ing behaviors (the speed use) on all drivers, which have driven for about 1h. Thus, two 
driving periods are considered : (1) outward step and (2) return step. Then, Student t test 
is applied to verify the existence of significant differences in driving behaviors between 
the outward and return periods. Several driving behavior variables have been considered 
and are derived from the speed signal, such as minimum, maximum, |minimum–maxi-
mum|, mean, standard deviation, variance, norm, norm1, MaxFFT, Skewness, and Kur-
tosis of speed. Then, other features have been investigated according to the peaks in this 
signal, such as minimum, maximum , |minimum–maximum|, mean, standard deviation 
and variance of peak extent, and the number of peaks.

In addition to the features proposed in literature (summarized above), the variables 
that demonstrated significant differences, with p value less than 0.05 (summarized on 
Table 3), have been also considered in our driving fatigue characterization investigations.
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Features selection by ensemble learning

The FS field is motivated by the well-known phenomenon of the ‘curse of dimensional-
ity’ which is very recurrent in recent data, as well as by the enhancement of learning 
generalization over the whole test set. It consists of ranking features according to their 
relevance and discarding the redundant ones.

Table 2  Features characterizing driving fatigue in literature

Id Feature descriptions

F1 PERCLOS ( F1 ) (Bergasa and Nuevo 2006; Ji et al. 2004; Jin et al. 2013; Kong et al. 2015; Friedrichs and 
Yang 2010; Darshana et al. 2015; Sun et al. 2017): represents the percentage of eyelid closure at 75%: 

PERCLOS75 =
Nclosure75

N

F2 Eye closure duration (ECD) ( F2 ) (Azim et al. 2014; Bergasa and Nuevo 2006; Kong et al. 2015; Sun et al. 2017, 
2015): represents the number of frames where the eye is totally closed. ECD =

∑

NTotal closure

F3 Pupil diameter (PupilDiam) ( F3 ) (Miyaji and Kawanaka 2010): represents the diameter of eye iris contour. 

PupilDiam = average(P_diaml, P_diamr)

F4 Percentage of saccade (Persac) ( F4 ) (Ji et al. 2004; Liang et al. 2007): represents the percentage of eye pupil 
saccade

F5 Average eye closure speed (AECS) ( F5 ) (Bergasa and Nuevo 2006; Ji et al. 2004; Friedrichs and 
Yang 2010): represents the number of frames where the eye changed its state (opened/closed) 

AECS =
NTotal closure+NTotal opening

NTransition

F6 Microsleep ( F6 ) (Friedrichs and Yang 2010): Microsleep during 30 s Microsleep =
∑

NTotal closure/N

F7 Eye opened (EOP) ( F7 ) (Sun et al. 2017, 2015): eye opened during 30 s EOP =
∑

NTotal opening/N

F8 Gaze angle distribution ( Gazdis ) (Ji et al. 2004; Engström et al. 2005; Jin et al. 2013; Darshana et al. 2015; Miyaji 

and Kawanaka 2010): Gaze =

√

ϕ2 + ψ2

F9 Gaze angle variation ( Gazvar ) (Ji et al. 2004): Gazvar = σ(Gazedis)

F10 FixedGaze (Bergasa and Nuevo 2006; Liang et al. 2007): it is a Boolean variable, if Gazedis is stable during 30 s 
FixedGaze = 1 , otherwise FixedGaze = 0

F11 Blink frequency ( Blinkfreq ) (Bergasa and Nuevo 2006; Jin et al. 2013; Friedrichs and Yang 2010; Sun et al. 2017, 

2015): Blinkfreq =
NTotal closure

N

F12 Blink duration (Blink-dur) (Friedrichs and Yang 2010; Hu and Zheng 2009) : represents the blink time amount

F13 Distribution of head tilt angle (Head-tilts-dis) (Bergasa and Nuevo 2006; Ji et al. 2004): 

HeadTilts =

√

ϕ2
head + ψ2

head

F14 Variation of head tilt angle (Head-tilts-var) (Bergasa and Nuevo 2006): HeadTiltsVar = σ(HeadTilts)

F15 Head nodding frequency (Head-nod-freq) (Bergasa and Nuevo 2006; Ji et al. 2004): represents the number of 
peaks in the head tilt angle distribution

F16 FacePose (Bergasa and Nuevo 2006): represents the number of frames where driver head is in frontal posi‑
tion 

∑

Nhead frontal position

F17 Steering wheel movement (SWM) (Engström et al. 2005; Joly et al. 2018; Thiffault and Bergeron 2003; Sahay‑
adhas et al. 2012; Ingre et al. 2006): represents the variability in steering wheel movements

Table 3  The proposed driving behavior features

Id Features Outward phase Return phase t test

Mean Std Mean Std p value

F18 Mean (speed) 95.591 4.603 93.386 7.428 0.041

F19 MaxFFT (speed) 132.813 35.179 168.795 43.354 5.28e−07

F20 Skewness (speed) − 2.042 0.473 − 1.822 0.618 0.022

F21 Number of peaks 9.731 2.171 10.925 2.59 0.004

F22 STD peaks extent 19.56 10.37 16.309 7.801 0.042
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Besides improving accuracy and efficiency of the machine-learning algorithms, FS 
techniques allow understanding, reducing and visualizing data as well as reducing 
storage and computational costs. Three main FS methods exist: (1) wrapper uses a 
learning algorithm; they are slow because they scan the whole space, searching the 
features subset which offers the highest learning performance, (2) Filter methods rank 
features independently of classifiers. Based on statistics (correlations, maximum vari-
ations, etc.) or on information theory (mutual information, entropy, etc.), features are 
selected depending on their abilities to differentiate data samples belonging to differ-
ent clusters . Filters are fast and do not require great computational resources, and (3) 
embedded methods are hybrids. They inject the feature selection technique into the 
learning algorithms as filtering step.

Combining different methods in decision-making supports systems to be more 
robust against the individual methods weaknesses. This technique, ensemble learn-
ing, has been widely used in pattern recognition, especially by combining classifiers 
and then voting ensembles of classifiers to improve the classification accuracy. The 
main idea in designing an ensemble learning is the diversity of combined methods, 
while respecting both outputs and structure (Duin 2002; Guan et al. 2014).

To investigate the relevance of features for the driving fatigue characterization by 
ensemble learning, we propose to combine the following ranking methods, which are 
based on different ranking criteria.

1.	 Feature Selection and Kernel Learning for Local Learning-Based Clustering (LLCFS) 
(Zeng and Cheung 2010): it associates a weight to each feature, and incorporates it 
into the built-in regularization of the LLC algorithm to take into account the rele-
vance of each feature for clustering.

2.	 Correlation-based Feature selection (CFS): it is an intuitive filter FS method, which 
sorts features according to pairwise correlations.

3.	 Laplacian Score (LS) (He et al. 2005): it uses the nearest neighbor graphs to evaluate 
the feature importance according to its ability for locality preserving.

4.	 Infinite Feature Selection (Inf-FS) (Roffo et al. 2015): it is composed of: (1) unsuper-
vised feature ranking step, where feature subset is a path connecting them into an 
affinity graph, and the score of each feature depends on all feature sets, (2) Super-
vised feature selection step, based on cross-validation to select the best m features.

5.	 Eigenvector Centrality Feature Selection (ECFS) (Roffo and Melzi 2017): it maps 
features in an affinity graph by means of mutual information, Fisher’s criteria and 
maximum standard deviation; then Eigenvector centrality measure is used to rank 
features.

6.	 Spectral Feature Selection (SFS) (Zhao and Liu 2007): it uses a similarity matrix and 
spectral graph theory to evaluate and rank features.

Then, driving fatigue features are ranked based on a ‘plurality vote’. This later is a sim-
plest method; it counts the number of decisions for each rank, then assigns features 
to the rank that obtained the highest number of votes (agreement index) (Guan et al. 
2014). If two features have the same agreement index for a given position, the feature, 



Page 11 of 15Henni et al. Appl Inform             (2018) 5:7 

which already appears in a better rank, is privileged; otherwise, features are classed 
consecutively.

Evaluation

In this study, we are seeking for features characterizing driving fatigue. We investigated 
the supervised SVM classifier with RBF kernel and the unsupervised density-based algo-
rithm ‘DBSCAN’ to evaluate the impact of features and their combinations in detecting 
driving fatigue.

The SVM (Mountrakis et al. 2011) is a classification algorithm, generally used to vali-
date the results of FS as well as embedded in ranking and subset selection for Wrapper 
and Embedded methods (Chen and Lin 2006). SVM is an efficient supervised learning 
algorithm, which is largely used in the detection and the recognition of objects (faces, 
hand-written characters, text ...) from signals (images, videos ...). During learning, SVM 
attempts to design hyper planes that leave the maximum margin of classes, to separate 
and classify data. Several kernel functions exist such as linear, polynomial, and radial 
basis (RBF). To analyze features characterizing driving fatigue, we use RBF kernel, which 
classifies data even if classes are non-linearly separable.

We also use the first density-based clustering algorithm DBSCAN (Ester et al. 1996); 
it was designed to discover clusters of arbitrary shapes in the presence of noise. Based 
on the ǫ-neighborhood cardinality of data points and some density concepts, it searches 
high-density clusters. We use this algorithm to evaluate the ability of features to separate 
data and then, illustrate the distribution of data points in each dimension.

A holdout validation is used to assess feature rankings given by FS. Training and test-
ing sets are sampled, respectively, 60% and 40% of the whole database. All FS methods 
are applied on training set, and then SVM and DBSCAN are used to classify test set 
while varying features amount and their ranking. The k-fold validation (k=50) has been 
considered to validate the SVM classification results.

Experimental results
Driving fatigue feature selection

We investigated the combination of several FS methods to select relevant features that 
characterize driving fatigue from a set of features listed in "Driver’s behavior features 
extraction" section.

First, we analyze the relevance of facial expression features. Table 4 summarizes their 
ranking by means of various FS methods. The obtained rankings depend on the FS 
method and consequently on the used criteria (clustering, the laplacian index or graphs). 
However, we note that several features occupy the same or roughly the same rank for dif-
ferent FS method.

For instance, the feature F4 which corresponds to ‘Persac’ tops the list for most 
methods.

Same for feature F5 , which corresponds to the average eye closure speed ‘AECS’ that 
occupied the second rank. In contrast, the feature F7 is ranked usually last among the 16 
features.

Moreover, the ranking agreement between the several FS methods is more impor-
tant for the first eight ranks. Figure 4a illustrates the FS methods agreement index of 
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each rank computed based on the feature occurrence frequency. For instance, fea-
tures F4 , F5 and F15 have a very high agreement index for their corresponding posi-
tions 1, 2 and 3. The agreement between FS methods in ranking features confirms the 
relevance of features, especially those considered in first ranks.

Second, we combined all feature sets (facial expression and driving behaviors fea-
tures) and evaluate their relevance by FS methods. A pronounced agreement is noted 
for the 13 first ranks. Therefore, we retain the intersection between the features in the 
13 first ranks for classification and the detection of driver’s fatigue (see Fig. 4b).

Table 4  Features ranking according the  FS methods (numerical values of  ranking 
represent the index of feature Fi)

FS methods Ranking

Laplacian 4 5 15 11 12 1 2 6 8 13 10 14 9 16 3 7

CFS 4 10 8 11 5 3 6 12 1 16 13 14 2 9 7 15

LLCFS 4 5 15 1 11 12 10 8 16 2 9 13 6 14 3 7

Inf-FS 4 5 15 1 11 12 10 13 14 2 8 16 9 6 3 7

ECFS 4 5 1 15 11 2 12 6 10 8 13 3 14 9 16 7

SFS 6 5 11  12 4 1 15 2 3 13 16 8 10 7 14 9

Fig. 4  Feature apparition frequency. a The best ranked facial expression features, b the retained features 
(facial expression and driving behaviors)
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Feature evaluation

The feature evaluation has been performed using two classifiers i.e., SVM and 
DBSCAN, and classification results are validated by k-fold method, with k =  50 (see 
"Evaluation" section). The retained feature subset is composed of :  {F1, F2, F4, F5, 
F10, F11, F15, F17, F18, F19, F20, F21, F22}.

Table  5 illustrates comparisons of classification rates, given by SVM and DBSCAN, 
while varying features subsets.

The classification accuracies using the SVM are almost higher due to its supervised 
aspects, and more consistent which can be explained by the data nature.

Both SVM and DBSCAN achieved their best classification rate with the retained fea-
ture subset; this subset is composed of all driving behaviors features and the most rel-
evant facial expressions ones (See Table 5).

Facial expression features are less relevant than driving behaviors. Based on these fea-
tures, SVM detects fatigue at 83.14% and DBSCAN accuracy is 78.5%.

The combination of facial expression features and driving behaviors enhances the clas-
sification rate (All features) at 85.53% for SVM and to 79.23% for DBSCAN. Although, 
the use of only relevant features as ranked by FS methods enhances algorithm accuracies 
(retained features). These results demonstrate the consistence of the retained features to 
characterize driving fatigue.

This study demonstrates the relevance of driving behavior features in driving fatigue 
detection; they illustrate a high relevance justified by the classification accuracies and by 
their rank given by FS methods. Their combination with some facial expression feature such 
as Perclos ( F1 ), ECS ( F2 ), Persac ( F4 ), and AECS ( F5 ), and increases the detection accuracy.

Conclusion
In this study, we investigated several feature selection methods to extract relevant fea-
tures that characterize driving fatigue. These features are derived from facial expres-
sion which measure eyes and head behaviors as well as from vehicle speed and steering 
wheel movements which reflect driving behavior. Features based on driving behavior 
illustrate for the first time their efficiency in real driving environment. The relevance 
of retained features was evaluated using classification methods, they well discriminate 
fatigued driver and no fatigued driver. As future works, we plan to develop an on-line 
fatigue detection prototype based on data stream analysis methods and the obtained 

Table 5  Classification rates using a SVM and a DBSCAN classifiers on the different feature 
set

Features sets Number of features SVM DBSCAN

ACC (%) Std ACC (%)

All features 22 85.53 1.02 79.23

Facial expression features 16 83.14 1.16 78.5

Eye-based features 12 82.65 1.1 78

Head-based features 4 81.30 0.33 75.63

Driving behaviors features 5 84.14 0.66 78

Retained features 13 89.13 1.01 80.91
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conclusions about the effectiveness of the retained features in driving fatigue detection 
on a real setting. Such prototypes would activate systems of autonomous helper cars 
when the drivers’ states are unsafe.
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